THE PRODIGY-5 MICRONUTRIENT FORMULA FOR GENERAL HEALTH: Vitamin A • Vitamin C • Vitamin D • Vitamin E • Vitamin K • Vitamin B6 • Vitamin B12 • Folate • B1 (Thiamin) • B2 (Riboflavin) • B3 (Niacin) 

MICRONUTRIENT FORMULA FOR EYE HEALTH: Lutein • Zeaxanthin • Copper • Zinc 

 

Vitamin A

From Wikipedia, the free encyclopedia
 
 
 
Chemical structure of retinol, one of the major forms of vitamin A

Vitamin A is a group of unsaturated nutritional organic compounds that includes retinolretinalretinoic acid, and several provitamin A carotenoids (most notably beta-carotene).[1] Vitamin A has multiple functions: it is important for growth and development, for the maintenance of the immune system and good vision.[2] Vitamin A is needed by the retina of the eye in the form of retinal, which combines with protein opsin to form rhodopsin, the light-absorbing molecule[3] necessary for both low-light (scotopic vision) and color vision.[4] Vitamin A also functions in a very different role as retinoic acid (an irreversibly oxidized form of retinol), which is an important hormone-like growth factor for epithelial and other cells.[2][5]

In foods of animal origin, the major form of vitamin A is an ester, primarily retinyl palmitate, which is converted to retinol (chemically an alcohol) in the small intestine. The retinol form functions as a storage form of the vitamin, and can be converted to and from its visually active aldehyde form, retinal.

All forms of vitamin A have a beta-ionone ring to which an isoprenoid chain is attached, called a retinyl group. Both structural features are essential for vitamin activity.[6] The orange pigment of carrots (beta-carotene) can be represented as two connected retinyl groups, which are used in the body to contribute to vitamin A levels. Alpha-carotene and gamma-carotene also have a single retinyl group, which give them some vitamin activity. None of the other carotenes have vitamin activity. The carotenoid beta-cryptoxanthin possesses an ionone group and has vitamin activity in humans.

Vitamin A can be found in two principal forms in foods:

  • Retinol, the form of vitamin A absorbed when eating animal food sources, is a yellow, fat-soluble substance. Since the pure alcohol form is unstable, the vitamin is found in tissues in a form of retinyl ester. It is also commercially produced and administered as esters such as retinyl acetate or palmitate.[7]
  • The carotenes alpha-carotenebeta-carotenegamma-carotene; and the xanthophyll beta-cryptoxanthin (all of which contain beta-ionone rings), but no other carotenoids, function as provitamin A in herbivores and omnivore animals, which possess the enzyme beta-carotene 15,15'-dioxygenase which cleaves beta-carotene in the intestinal mucosa and converts it to retinol.[8] In general, carnivores are poor converters of ionone-containing carotenoids, and pure carnivores such as cats and ferrets lack beta-carotene 15,15'-dioxygenase and cannot convert any carotenoids to retinal (resulting in none of the carotenoids being forms of vitamin A for these species).

History

The discovery of vitamin A may have stemmed from research dating back to 1816, when physiologist François Magendie observed that dogs deprived of nutrition developed corneal ulcers and had a high mortality rate.[9] In 1912, Frederick Gowland Hopkins demonstrated that unknown accessory factors found in milk, other than carbohydratesproteins, and fats were necessary for growth in rats. Hopkins received a Nobel Prize for this discovery in 1929.[9][10] By 1913, one of these substances was independently discovered by Elmer McCollum and Marguerite Davis at the University of Wisconsin–Madison, and Lafayette Mendel and Thomas Burr Osborne at Yale University who studied the role of fats in the diet. McCollum and Davis ultimately received credit because they submitted their paper three weeks before Mendel and Osborne. Both papers appeared in the same issue of the Journal of Biological Chemistry in 1913.[11] The "accessory factors" were termed "fat soluble" in 1918 and later "vitamin A" in 1920. In 1919, Harry Steenbock(University of Wisconsin–Madison) proposed a relationship between yellow plant pigments (beta-carotene) and vitamin A. In 1931, Swiss chemist Paul Karrer described the chemical structure of vitamin A.[9] Vitamin A was first synthesized in 1947 by two Dutch chemists, David Adriaan van Dorp and Jozef Ferdinand Arens.

Equivalencies of retinoids and carotenoids (IU)

As some carotenoids can be converted into vitamin A, attempts have been made to determine how much of them in the diet is equivalent to a particular amount of retinol, so that comparisons can be made of the benefit of different foods. The situation can be confusing because the accepted equivalences have changed. For many years, a system of equivalencies in which an international unit (IU) was equal to 0.3 μg of retinol, 0.6 μg of β-carotene, or 1.2 μg of other provitamin-A carotenoids was used.[12] Later, a unit called retinol equivalent (RE) was introduced. Prior to 2001, one RE corresponded to 1 μg retinol, 2 μg β-carotene dissolved in oil (it is only partly dissolved in most supplement pills, due to very poor solubility in any medium), 6 μg β-carotene in normal food (because it is not absorbed as well as when in oils), and 12 μg of either α-caroteneγ-carotene, or β-cryptoxanthin in food.

Newer research has shown that the absorption of provitamin-A carotenoids is only half as much as previously thought. As a result, in 2001 the US Institute of Medicine recommended a new unit, the retinol activity equivalent (RAE). Each μg RAE corresponds to 1 μg retinol, 2 μg of β-carotene in oil, 12 μg of "dietary" beta-carotene, or 24 μg of the three other dietary provitamin-A carotenoids.[13]

Substance and its chemical environmentMicrograms of retinol equivalent
per microgram of the substance
retinol 1
beta-carotene, dissolved in oil 1/2
beta-carotene, common dietary 1/12
alpha-carotene, common dietary 1/24
gamma-carotene, common dietary 1/24
beta-cryptoxanthin, common dietary 1/24

Because the conversion of retinol from provitamin carotenoids by the human body is actively regulated by the amount of retinol available to the body, the conversions apply strictly only for vitamin A-deficient humans. The absorption of provitamins depends greatly on the amount of lipids ingested with the provitamin; lipids increase the uptake of the provitamin.[14]

The conclusion that can be drawn from the newer research is that fruits and vegetables are not as useful for obtaining vitamin A as was thought; in other words, the IUs that these foods were reported to contain were worth much less than the same number of IUs of fat-dissolved oils and (to some extent) supplements. This is important for vegetarians, as night blindness is prevalent in countries where little meat or vitamin A-fortified foods are available.

A sample vegan diet for one day that provides sufficient vitamin A has been published by the Food and Nutrition Board (page 120[13]). On the other hand, reference values for retinol or its equivalents, provided by the National Academy of Sciences, have decreased. The RDA (for men) of 1968 was 5000 IU (1500 μg retinol). In 1974, the RDA was set to 1000 RE (1000 μg retinol), whereas now the Dietary Reference Intake is 900 RAE (900 μg or 3000 IU retinol). This is equivalent to 1800 μg of β-carotene supplement (3000 IU) or 10800 μg of β-carotene in food (18000 IU).

Recommended daily allowance

Vitamin A
Dietary Reference Intake:[15]

Life stage groupRDA

Adequate intakes (AI*)
μg/day

Upper limit

μg/day

Infants

0–6 months
7–12 months


400*
500*

600
600
Children

1–3 years
4–8 years


300
400

600
900
Males

9–13 years
14–18 years
19 – >70 years


600
900
900

1700
2800
3000
Females

9–13 years
14–18 years
19 – >70 years


600
700
700

1700
2800
3000
Pregnancy

<19 years
19 – >50 years


750
770

2800
3000
Lactation

<19 years
19 – >50 years


1200
1300

2800
3000

(The limit is for synthetic and natural retinol ester forms of vitamin A. Carotene forms from dietary sources are not toxic.[16][17])

According to the Institute of Medicine of the National Academies, "RDAs are set to meet the needs of almost all (97 to 98%) individuals in a group. For healthy breastfed infants, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevents being able to specify with confidence the percentage of individuals covered by this intake."[18]

Sources

Vitamin A is found in many foods:

Note: Data taken from USDA database.[19] Bracketed values are retinol activity equivalences (RAEs) and percentage of the adult male RDA, per 100 grams of the foodstuff (average).

Conversion of carotene to retinol varies from person to person and bioavailability of carotene in food varies.[20][21]

Metabolic functions

Vitamin A plays a role in a variety of functions throughout the body, such as:

  • Vision
  • Gene transcription
  • Immune function
  • Embryonic development and reproduction
  • Bone metabolism
  • Haematopoiesis
  • Skin and cellular health
  • Antioxidant activity

Vision

The role of vitamin A in the visual cycle is specifically related to the retinal form. Within the eye, 11-cis-retinal is bound to the protein "opsin" to form rhodopsin in rods[3] and iodopsin (cones) at conserved lysine residues. As light enters the eye, the 11-cis-retinal is isomerized to the all-"trans" form. The all-"trans" retinal dissociates from the opsin in a series of steps called photo-bleaching. This isomerization induces a nervous signal along the optic nerve to the visual center of the brain. After separating from opsin, the all-"trans"-retinal is recycled and converted back to the 11-"cis"-retinal form by a series of enzymatic reactions. In addition, some of the all-"trans" retinal may be converted to all-"trans" retinol form and then transported with an interphotoreceptor retinol-binding protein (IRBP) to the pigment epithelial cells. Further esterification into all-"trans" retinyl esters allow for storage of all-trans-retinol within the pigment epithelial cells to be reused when needed.[22] The final stage is conversion of 11-cis-retinal will rebind to opsin to reform rhodopsin (visual purple) in the retina. Rhodopsin is needed to see in low light (contrast) as well as for night vision. Kühne showed that rhodopsin in the retina is only regenerated when the retina is attached to retinal pigmented epithelium,[3] which provides retinal. It is for this reason that a deficiency in vitamin A will inhibit the reformation of rhodopsin and lead to one of the first symptoms, night blindness.[23]

Gene transcription

Main article: Gene transcription

Vitamin A, in the retinoic acid form, plays an important role in gene transcription. Once retinol has been taken up by a cell, it can be oxidized to retinal (retinaldehyde) by retinol dehydrogenases and then retinaldehyde can be oxidized to retinoic acid by retinaldehyde dehydrogenases.[24] The conversion of retinaldehyde to retinoic acid is an irreversible step, meaning that the production of retinoic acid is tightly regulated, due to its activity as a ligand for nuclear receptors.[22] The physiological form of retinoic acid (all-trans-retinoic acid) regulates gene transcription by binding to nuclear receptors known as retinoic acid receptors (RARs) which are bound to DNA as heterodimers with retinoid "X" receptors (RXRs). RAR and RXR must dimerize before they can bind to the DNA. RAR will form a heterodimer with RXR (RAR-RXR), but it does not readily form a homodimer (RAR-RAR). RXR, on the other hand, may form a homodimer (RXR-RXR) and will form heterodimers with many other nuclear receptors as well, including the thyroid hormone receptor (RXR-TR), the Vitamin D3 receptor (RXR-VDR), the peroxisome proliferator-activated receptor (RXR-PPAR) and the liver "X" receptor (RXR-LXR).[25] The RAR-RXR heterodimer recognizes retinoic acid response elements (RAREs) on the DNA whereas the RXR-RXR homodimer recognizes retinoid "X" response elements (RXREs) on the DNA; although several RAREs near target genes have been shown to control physiological processes,[24] this has not been demonstrated for RXREs. The heterodimers of RXR with nuclear receptors other than RAR (i.e. TR, VDR, PPAR, LXR) bind to various distinct response elements on the DNA to control processes not regulated by vitamin A.[22] Upon binding of retinoic acid to the RAR component of the RAR-RXR heterodimer, the receptors undergo a conformational change that causes co-repressors to dissociate from the receptors. Coactivators can then bind to the receptor complex, which may help to loosen the chromatin structure from the histones or may interact with the transcriptional machinery.[25] This response can upregulate (or downregulate) the expression of target genes, including Hox genes as well as the genes that encode for the receptors themselves (i.e. RAR-beta in mammals).[22]

Dermatology

Vitamin A, and more specifically, retinoic acid, appears to maintain normal skin health by switching on genes and differentiating keratinocytes (immature skin cells) into mature epidermal cells.[26] Exact mechanisms behind pharmacological retinoid therapy agents in the treatment of dermatological diseases are being researched. For the treatment of acne, the most prescribed retinoid drug is 13-cis retinoic acid (isotretinoin). It reduces the size and secretion of the sebaceous glands. Although it is known that 40 mg of isotretinoin will break down to an equivalent of 10 mg of ATRA — the mechanism of action of the drug (original brand name Accutane) remains unknown and is a matter of some controversy. Isotretinoin reduces bacterial numbers in both the ducts and skin surface. This is thought to be a result of the reduction in sebum, a nutrient source for the bacteria. Isotretinoin reduces inflammation via inhibition of chemotactic responses of monocytes and neutrophils.[22] Isotretinoin also has been shown to initiate remodeling of the sebaceous glands; triggering changes in gene expression that selectively induce apoptosis.[27] Isotretinoin is a teratogen with a number of potential side-effects. Consequently, its use requires medical supervision.

Retinal/retinol versus retinoic acid[edit]

Vitamin A deprived rats can be kept in good general health with supplementation of retinoic acid. This reverses the growth-stunting effects of vitamin A deficiency, as well as early stages of xerophthalmia. However, such rats show infertility (in both male and females) and continued degeneration of the retina, showing that these functions require retinal or retinol, which are interconvertible but which cannot be recovered from the oxidized retinoic acid. The requirement of retinol to rescue reproduction in vitamin A deficient rats is now known to be due to a requirement for local synthesis of retinoic acid from retinol in testis and embryos.[28][29]

Deficiency

Main article: Vitamin A deficiency

Vitamin A deficiency is estimated to affect approximately one third of children under the age of five around the world.[30] It is estimated to claim the lives of 670,000 children under five annually.[31] Approximately 250,000–500,000 children in developing countries become blind each year owing to vitamin A deficiency, with the highest prevalence in Southeast Asia and Africa.[32] Vitamin A deficiency is "the leading cause of preventable childhood blindness," according to UNICEF.[33][34] It also increases the risk of death from common childhood conditions such as diarrhea. UNICEF regards addressing vitamin A deficiency as critical to reducing child mortality, the fourth of the United NationsMillennium Development Goals.[33]

Vitamin A deficiency can occur as either a primary or a secondary deficiency. A primary vitamin A deficiency occurs among children and adults who do not consume an adequate intake of provitamin A carotenoids from fruits and vegetables or preformed vitamin A from animal and dairy products. Early weaning from breastmilk can also increase the risk of vitamin A deficiency.

Secondary vitamin A deficiency is associated with chronic malabsorption of lipids, impaired bile production and release, and chronic exposure to oxidants, such as cigarette smoke, and chronic alcoholism. Vitamin A is a fat-soluble vitamin and depends on micellar solubilization for dispersion into the small intestine, which results in poor use of vitamin A from low-fat diets. Zinc deficiency can also impair absorption, transport, and metabolism of vitamin A because it is essential for the synthesis of the vitamin A transport proteins and as the cofactor in conversion of retinol to retinal. In malnourished populations, common low intakes of vitamin A and zinc increase the severity of vitamin A deficiency and lead physiological signs and symptoms of deficiency.[22] A study in Burkina Faso showed major reduction of malaria morbidity with combined vitamin A and zinc supplementation in young children.[35]

Due to the unique function of retinal as a visual chromophore, one of the earliest and specific manifestations of vitamin A deficiency is impaired vision, particularly in reduced light – night blindness. Persistent deficiency gives rise to a series of changes, the most devastating of which occur in the eyes. Some other ocular changes are referred to as xerophthalmia. First there is dryness of the conjunctiva (xerosis) as the normal lacrimal and mucus-secreting epithelium is replaced by a keratinized epithelium. This is followed by the build-up of keratin debris in small opaque plaques (Bitot's spots) and, eventually, erosion of the roughened corneal surface with softening and destruction of the cornea (keratomalacia) and leading to total blindness.[36] Other changes include impaired immunity (increased risk of ear infections, urinary tract infections, Meningococcal disease), hyperkeratosis (white lumps at hair follicles), keratosis pilaris and squamous metaplasia of the epithelium lining the upper respiratory passages and urinary bladder to a keratinized epithelium. With relations to dentistry, a deficiency in Vitamin A leads to enamel hypoplasia.

Adequate supply, but not excess vitamin A, is especially important for pregnant and breastfeeding women for normal fetal development and in breastmilk. Deficiencies cannot be compensated by postnatal supplementation.[37][38] Excess vitamin A, which is most common with high dose vitamin supplements, can cause birth defects and therefore should not exceed recommended daily values.[24]

Vitamin A metabolic inhibition as a result of alcohol consumption during pregnancy is the elucidated mechanism for fetal alcohol syndrome and is characterized by teratogenicity closely matching maternal vitamin A deficiency.[39]

Vitamin A supplementation

Global efforts to support national governments in addressing vitamin A deficiency are led by the Global Alliance for Vitamin A (GAVA), which is an informal partnership between A2Z, the Canadian International Development AgencyHelen Keller International, the Micronutrient InitiativeUNICEFUSAID, and the World Bank. Joint GAVA activity is coordinated by the Micronutrient Initiative.

While strategies include intake of vitamin A through a combination of breast feeding and dietary intake, delivery of oral high-dose supplements remain the principal strategy for minimizing deficiency.[40] A meta-analysis of 43 studies showed that vitamin A supplementation of children under five who are at risk of deficiency reduces mortality by up to 24%.[41] About 75% of the vitamin A required for supplementation activity by developing countries is supplied by the Micronutrient Initiative with support from the Canadian International Development Agency.[42] Food fortification approaches are becoming increasingly feasible[43] but cannot yet ensure coverage levels.[40]

The World Health Organization estimates that Vitamin A supplementation has averted 1.25 million deaths due to vitamin A deficiency in 40 countries since 1998.[44] In 2008 it was estimated that an annual investment of US$60 million in vitamin A and zinc supplementation combined would yield benefits of more than US$1 billion per year, with every dollar spent generating benefits of more than US$17.[45] These combined interventions were ranked by the Copenhagen Consensus 2008 as the world’s best development investment.[45]

Observational studies of pregnant women in sub-Saharan Africa have shown that low serum vitamin A levels are associated with an increased risk of mother-to-child transmission (MTCT) of HIV. Vitamin A is cheap and easily provided through existing health services in low-income settings. It is thus important to determine the effect of routine supplementation of H levels,[46][47] and because low blood vitamin A levels have been associated with rapid HIV infection and deaths,[48][49] To identify randomised controlled trials comparing vitamin A supplementation with placebo in known HIV-infected pregnant women, authors searched the Cochrane Library, PubMed, EMBASE, AIDSearch and GATEWAY; checked reference lis,.[50][51] Authoritative reviews of more recent and better-designed studies have found no relationship between the level of serum maternal and/or infant vitamin A and the likelihood of vertical (MTCT) HIV transmission.[52] of HIV,[52][53] our trials which enrolled 3033 HIV-infected pregnant women met inclusion criteria. Authors found significant statistical heterogeneity between the three trials with information on MTCT of HIV. Overall, there was no evidence of an effect of antenatal vitamin A supplementation on the risk of MTCT of HIV. However, antenatal vitamin A supplementation significantly improved birth weight, but there was no evidence of an effect on preterm births, stillbirths, deaths by 24 months.[54] Evidence is also lacking on whether vitamin A supplementation for infants up to six months of age reduces infant mortality or morbidity in low- and middle-income countries.[55]

Toxicity

Main article: Hypervitaminosis A

Since vitamin A is fat-soluble, disposing of any excesses taken in through diet takes much longer than with water-soluble B vitamins and vitamin C. This allows for toxic levels of vitamin A to accumulate. These toxicities only occur with preformed (retinoid) vitamin A (such as from liver). The carotenoid forms (such as beta-carotene as found in carrots), give no such symptoms, except with supplements and chronic alcoholism, but excessive dietary intake of beta-carotene can lead to carotenodermia, a harmless but cosmetically displeasing orange-yellow discoloration of the skin.[56][57][58]

In general, acute toxicity occurs at doses of 25,000 IU/kg of body weight, with chronic toxicity occurring at 4,000 IU/kg of body weight daily for 6–15 months.[59] However, liver toxicities can occur at levels as low as 15,000 IU (4500 micrograms) per day to 1.4 million IU per day, with an average daily toxic dose of 120,000 IU, particularly with excessive consumption of alcohol .[citation needed] In people with renal failure, 4000 IU can cause substantial damage. Children can reach toxic levels at 1,500 IU/kg of body weight.[60]

Excessive vitamin A consumption can lead to nausea, irritability, anorexia (reduced appetite), vomiting, blurry vision, headaches, hair loss, muscle and abdominal pain and weakness, drowsiness, and altered mental status. In chronic cases, hair loss, dry skin, drying of the mucous membranes, fever, insomnia, fatigue, weight loss, bone fractures, anemia, and diarrhea can all be evident on top of the symptoms associated with less serious toxicity.[61]Some of these symptoms are also common to acne treatment with Isotretinoin. Chronically high doses of vitamin A, and also pharmaceutical retinoids such as 13-cis retinoic acid, can produce the syndrome of pseudotumor cerebri.[62] This syndrome includes headache, blurring of vision and confusion, associated with increased intracerebral pressure. Symptoms begin to resolve when intake of the offending substance is stopped.[63]

Chronic intake of 1500 RAE of preformed vitamin A may be associated with osteoporosis and hip fractures because it suppresses bone building while simultaneously stimulating bone breakdown.[64]

High vitamin A intake has been associated with spontaneous bone fractures in animals. Cell culture studies have linked increased bone resorption and decreased bone formation with high intakes. This interaction may occur because vitamins A and D may compete for the same receptor and then interact with parathyroid hormone, which regulates calcium.[60] Indeed, a study by Forsmo et al. shows a correlation between low bone mineral density and too high intake of vitamin A.[65] Sufficiently high levels of vitamin D may be protective against the bone density lowering effects of high vitamin A, while inadequate levels of vitamin D may exacerbate those effects.[66][67][68][69]

Toxic effects of vitamin A have been shown to significantly affect developing fetuses. Therapeutic doses used for acne treatment have been shown to disrupt cephalic neural cell activity. The fetus is particularly sensitive to vitamin A toxicity during the period of organogenesis.[22]

Hepatic (liver) injury has been found in human and animal studies where consumption of alcohol is paired with high dose vitamin A and beta-carotene supplementation.

Researchers have succeeded in creating water-soluble forms of vitamin A, which they believed could reduce the potential for toxicity.[70] However, a 2003 study found water-soluble vitamin A was approximately 10 times as toxic as fat-soluble vitamin.[71] A 2006 study found children given water-soluble vitamin A and D, which are typically fat-soluble, suffer from asthma twice as much as a control group supplemented with the fat-soluble vitamins.[72]

In some studies, the use of Vitamin A supplements has been linked to an increased rate of mortality,[73] but there is minimal evidence to show this.[74]

Vitamin A and derivatives in medical use

Retinyl palmitate has been used in skin creams, where it is broken down to retinol and ostensibly metabolised to retinoic acid, which has potent biological activity, as described above.

The retinoids (for example, 13-cis-retinoic acid) constitute a class of chemical compounds chemically related to retinoic acid, and are used in medicine to modulate gene functions in place of this compound. Like retinoic acid, the related compounds do not have full vitamin A activity, but do have powerful effects on gene expression and epithelial cell differentiation.[75]

Pharmaceutics utilizing mega doses of naturally occurring retinoic acid derivatives are currently in use for cancer, HIV, and dermatological purposes.[76] At high doses, side-effects are similar to vitamin A toxicity.

References

  1. Jump up^  Fennema, Owen (2008). Fennema's Food Chemistry. CRC Press Taylor & Francis. pp. 454–455. ISBN 9780849392726.
  2. Jump up to:a b Tanumihardjo SA (2011). "Vitamin A: biomarkers of nutrition for development"The American Journal of Clinical Nutrition94 (2): 658S–665S. doi:10.3945/ajcn.110.005777PMC 3142734Freely accessiblePMID 21715511.
  3. Jump up to:a b c Wolf G (2001). "The discovery of the visual function of vitamin A"The Journal of Nutrition131 (6): 1647–1650. PMID 11385047.
  4. Jump up^  "Vitamin A".
  5. Jump up^  News Medical. "What is Vitamin A?". Retrieved 1 May 2012.
  6. Jump up^  Carolyn Berdanier. 1997. Advanced Nutrition Micronutrients. CRC Press, ISBN 0849326648, pp. 22–39
  7. Jump up^  Meschino Health. "Comprehensive Guide to Vitamin A". Retrieved 1 May2012.
  8. Jump up^  DeMan, John (1999). Principles of Food chemistry (3rd ed.). Maryland: Aspen Publication Inc. p. 358. ISBN 083421234X.
  9. Jump up to:a b c Semba RD (2012). "On the 'Discovery' of Vitamin A". Annals of Nutrition & Metabolism61 (3): 192–198. doi:10.1159/000343124PMID 23183288.
  10. Jump up^  Wolf, George (2001). "Discovery of Vitamin A". Encyclopedia of Life Sciencesdoi:10.1038/npg.els.0003419ISBN 0-470-01617-5.
  11. Jump up^  Rosenfeld, Louis (April 1997). "Vitamine—vitamin. The early years of discovery"Clinical Chemistry. American Association for Clinical Chemistry. 43 (4): 680–685. Retrieved June 10, 2016.
  12. Jump up^  Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 20 USDA, Feb. 2008
  13. Jump up to:a b Chapter 4, Vitamin A of Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and ZincFood and Nutrition Board of the Institute of Medicine, 2001
  14. Jump up^  Solomons NW, Orozco M (2003). "Alleviation of vitamin A deficiency with palm fruit and its products" (PDF)Asia Pacific Journal of Clinical Nutrition12 (3): 373–84. PMID 14506004.
  15. Jump up^  Dietary Reference Intakes: Vitamins
  16. Jump up^  "Sources of vitamin A". Retrieved 27 August 2007.
  17. Jump up^  "Linus Pauling Institute at Oregon State University: Vitamin A Safety". Retrieved 2 September 2007.
  18. Jump up^  Food and Nutrition Board. Institute of Medicine. National Academies. (2001) "Dietary Reference Intakes"
  19. Jump up^  http://www.nal.usda.gov/fnic/foodcomp/search/
  20. Jump up^  Borel P, Drai J, Faure H, Fayol V, Galabert C, Laromiguière M, Le Moël G (2005). "Recent knowledge about intestinal absorption and cleavage of carotenoids". Annales de Biologie Clinique (in French). 63 (2): 165–77. PMID 15771974.
  21. Jump up^  Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA (2005). "Spinach or carrots can supply significant amounts of vitamin A as assessed by feeding with intrinsically deuterated vegetables". The American Journal of Clinical Nutrition82 (4): 821–8. PMID 16210712.
  22. Jump up to:a b c d e f g Combs, Gerald F. (2008). The Vitamins: Fundamental Aspects in Nutrition and Health (3rd ed.). Burlington: Elsevier Academic Press. ISBN 978-0-12-183493-7.
  23. Jump up^  McGuire, Michelle; Beerman, Kathy A. (2007). Nutritional sciences: from fundamentals to food. Belmont, CA: Thomson/Wadsworth. ISBN 0-534-53717-0.
  24. Jump up to:a b c Duester G (2008). "Retinoic Acid Synthesis and Signaling during Early Organogenesis"Cell134 (6): 921–31. doi:10.1016/j.cell.2008.09.002PMC 2632951Freely accessiblePMID 18805086.
  25. Jump up to:a b Stipanuk, Martha H. (2006). Biochemical, Physiological and Molecular Aspects of Human Nutrition (2nd ed.). Philadelphia: Saunders. ISBN 9781416002093.
  26. Jump up^  Fuchs E, Green H (1981). "Regulation of terminal differentiation of cultured human keratinocytes by vitamin A". Cell25 (3): 617–25. doi:10.1016/0092-8674(81)90169-0PMID 6169442.
  27. Jump up^  Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM (2008). "Neutrophil gelatinase–associated lipocalin mediates 13-cis retinoic acid–induced apoptosis of human sebaceous gland cells"The Journal of Clinical Investigation118 (4): 1468–1478. doi:10.1172/JCI33869PMC 2262030Freely accessiblePMID 18317594.
  28. Jump up^  Moore T, Holmes PD (1971). "The production of experimental vitamin A deficiency in rats and mice". Laboratory Animals5 (2): 239–50. doi:10.1258/002367771781006492PMID 5126333.
  29. Jump up^  van Beek ME, Meistrich ML (1991). "Spermatogenesis in retinol-deficient rats maintained on retinoic acid". Journal of Reproduction and Fertility94 (2): 327–36. doi:10.1530/jrf.0.0940327PMID 1593535.
  30. Jump up^  World Health Organization, Global prevalence of vitamin A deficiency in populations at risk 1995–2005, WHO global database on vitamin A deficiency.
  31. Jump up^  Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J (2008). "Maternal and child undernutrition: global and regional exposures and health consequences". Lancet371 (9608): 243–60. doi:10.1016/S0140-6736(07)61690-0PMID 18207566.
  32. Jump up^  "Fact sheet for health professionals: Vitamin A"Office of Dietary Supplements, National Institutes of Health. 5 June 2013. Retrieved 6 Dec2015.
  33. Jump up to:a b "Vitamin A Deficiency", UNICEF. Retrieved 3 June 2015.
  34. Jump up^  Also see Akhtar S.; et al. (Dec 2013). "Prevalence of vitamin A deficiency in South Asia: causes, outcomes, and possible remedies". Journal of Health, Population, and Nutrition31 (4): 413–23. doi:10.3329/jhpn.v31i4.19975PMID 24592582.
  35. Jump up^  Zeba AN, Sorgho H, Rouamba N, Zongo I, Rouamba J, Guiguemdé RT, Hamer DH, Mokhtar N, Ouedraogo JB (2008). "Major reduction of malaria morbidity with combined vitamin A and zinc supplementation in young children in Burkina Faso: a randomized double blind trial"Nutrition Journal7: 7. doi:10.1186/1475-2891-7-7PMC 2254644Freely accessiblePMID 18237394.
  36. Jump up^  Roncone DP (2006). "Xerophthalmia secondary to alcohol-induced malnutrition". Optometry (St. Louis, Mo.)77 (3): 124–33. doi:10.1016/j.optm.2006.01.005PMID 16513513.
  37. Jump up^  Strobel M, Tinz J, Biesalski HK (2007). "The importance of beta-carotene as a source of vitamin A with special regard to pregnant and breastfeeding women". European Journal of Nutrition. 46 Suppl 1: I1–20. doi:10.1007/s00394-007-1001-zPMID 17665093.
  38. Jump up^  Schulz C, Engel U, Kreienberg R, Biesalski HK (2007). "Vitamin A and beta-carotene supply of women with gemini or short birth intervals: a pilot study". European Journal of Nutrition46 (1): 12–20. doi:10.1007/s00394-006-0624-9PMID 17103079.
  39. Jump up^  Crabb DW, Pinairs J, Hasanadka R, Fang M, Leo MA, Lieber CS, Tsukamoto H, Motomura K, Miyahara T, Ohata M, Bosron W, Sanghani S, Kedishvili N, Shiraishi H, Yokoyama H, Miyagi M, Ishii H, Bergheim I, Menzl I, Parlesak A, Bode C (2001). "Alcohol and retinoids". Alcohol. Clin. Exp. Res25 (5 Suppl ISBRA): 207S–217S. doi:10.1111/j.1530-0277.2001.tb02398.xPMID 11391073.
  40. Jump up to:a b UNICEF, Vitamin A Supplementation: A Decade of Progress, New York, 2007, p. 3.
  41. Jump up^  Mayo-Wilson E, Imdad A, Herzer K, Yakoob MY, Bhutta ZA (2011). "Vitamin a supplements for preventing mortality, illness, and blindness in children aged under 5: Systematic review and meta-analysis"BMJ (Clinical Research Ed.)343: d5094. doi:10.1136/bmj.d5094PMC 3162042Freely accessiblePMID 21868478.
  42. Jump up^  Micronutrient Initiative, Annual Report 2009-2010, p. 4.
  43. Jump up^  Golden Rice is an effective source for Vitamin AAmerican Journal of Clinical Nutrition, June 2009.
  44. Jump up^  "Micronutrient Deficiencies-Vitamin A"World Health Organization. Retrieved 9 April 2008.
  45. Jump up to:a b Copenhagen Consensus 2008, Results, press release, 30 May 2008.
  46. Jump up^  Kassu A, Andualem B, Van Nhien N, et al. (2007). "Vitamin A deficiency in patients with diarrhea and HIV infection in Ethiopia". Asia Pac J Clin Nutr16(1): 323–328.
  47. Jump up^  Dror DK, Allen LH (2011). "Vitamin E deficiency in developing countries". Food Nutr Bull32 (2): 124–143. doi:10.1177/156482651103200206.
  48. Jump up^  Semba RD, Caiaffa WT, Graham NM, et al. (1995). "rs". J Infect Dis171(5): 1196–1202.
  49. Jump up^  Semba RD, Graham NM, Caiaffa WT, et al. (1993). "Increased mortality associated with vitamin deficiency during AIDS". Arch Intern Med153 (18): 2149–2154. doi:10.1001/archinte.1993.00410180103012.
  50. Jump up^  Burger H, Kovacs A, Weiser B, et al. (1997). "Maternal serum vitamin A levels are not associated with mother-to-child transmission of HIV-1 in the United States". J Acquir Immune Defic Syndr Hum Retrovirol14 (4): 321–326.
  51. Jump up^  Greenberg BL, Semba RD, Vink PE, et al. (1997). "Vitamin A deficiency and maternal-infant transmissions of HIV in two metropolitan areas in the United States". AIDS11 (3): 325–332. doi:10.1097/00002030-199703110-00010.
  52. Jump up to:a b Wiysonge CS, Shey M, Kongnyuy EJ, et al. (2011). Vitamin A supplementation for reducing the risk of mother-to-child transmission of HIV infection. Cochrane Database Syst Rev. Issue 1. Art No.: CD003648. doi:10.1002/14651858.CD003648.pub3
  53. Jump up^  WHO. (2011). Guideline: Vitamin A supplementation in pregnancy for reducing the risk of mother-to-child transmission of HIV. Available at: http://whqlibdoc.who.int/publications/2011/9789241501804_eng.pdfAccessed on March 4, 2015.
  54. Jump up^  http://whqlibdoc.who.int/publications/2011/9789241501804_eng.pdfAccessed on March 4, 2015.
  55. Jump up^  Imdad, A; Ahmed, Z; Bhutta, ZA (28 September 2016). "Vitamin A supplementation for the prevention of morbidity and mortality in infants one to six months of age.". The Cochrane database of systematic reviews9: CD007480. PMID 27681486.
  56. Jump up^  Sale TA, Stratman E (2004). "Carotenemia associated with green bean ingestion". Pediatric Dermatology21 (6): 657–9. doi:10.1111/j.0736-8046.2004.21609.xPMID 15575851.
  57. Jump up^  Nishimura Y, Ishii N, Sugita Y, Nakajima H (1998). "A case of carotenodermia caused by a diet of the dried seaweed called Nori". The Journal of Dermatology25 (10): 685–7. PMID 9830271.
  58. Jump up^  Takita Y, Ichimiya M, Hamamoto Y, Muto M (2006). "A case of carotenemia associated with ingestion of nutrient supplements". The Journal of Dermatology33 (2): 132–4. doi:10.1111/j.1346-8138.2006.00028.xPMID 16556283.
  59. Jump up^  Rosenbloom, Mark. "Toxicity, Vitamin"eMedicine.
  60. Jump up to:a b Penniston KL, Tanumihardjo SA (2006). "The acute and chronic toxic effects of vitamin A". The American Journal of Clinical Nutrition83 (2): 191–201. PMID 16469975.
  61. Jump up^  Eledrisi, Mohsen S. "Vitamin A Toxicity"eMedicine.
  62. Jump up^  Brazis PW (2004). "Pseudotumor cerebri". Current Neurology and Neuroscience Reports4 (2): 111–6. doi:10.1007/s11910-004-0024-6PMID 14984682.
  63. Jump up^  AJ Giannini, RL Gilliland. The Neurologic, Neurogenic and Neuropsychiatric Disorders Handbook. New Hyde Park, NY. Medical Examination Publishing Co., 1982, ISBN 0-87488-699-6 pp. 182–183.
  64. Jump up^  Whitney, Ellie; Sharon Rady Rolfes (2011). Peggy Williams, ed. Understanding Nutrition (Twelfth ed.). California: Wadsworth:Cengage Learning. ISBN 0-538-73465-5.
  65. Jump up^  Forsmo S, Fjeldbo SK, Langhammer A (2008). "Childhood Cod Liver Oil Consumption and Bone Mineral Density in a Population-based Cohort of Peri- and Postmenopausal Women: The Nord-Trøndelag Health Study". American Journal of Epidemiology167 (4): 406–411. doi:10.1093/aje/kwm320PMID 18033763.
  66. Jump up^  Melhus H, Michaëlsson K, Kindmark A, Bergström R, Holmberg L, Mallmin H, Wolk A, Ljunghall S (1998). "Excessive Dietary Intake of Vitamin A is Associated with Reduced Bone Mineral Density and Increased Risk for Hip Fracture". Annals of Internal Medicine129 (10): 770–778. doi:10.7326/0003-4819-129-10-199811150-00003PMID 9841582.
  67. Jump up^  Johansson S, Melhus H (2001). "Vitamin A Antagonizes Calcium Response to Vitamin D in Man". Journal of Bone and Mineral Research16 (10): 1899–905. doi:10.1359/jbmr.2001.16.10.1899PMID 11585356.
  68. Jump up^  Johansson S, Melhus H (1999). "Vitamin A Antagonizes the Action of Vitamin D in Rats". J. Nutr129 (12): 2246–2250. PMID 10573558.
  69. Jump up^  Rohde CM, DeLuca HF (2005). "All-trans Retinoic Acid Antagonizes the Action of Calciferol and Its Active Metabolite, 1,25-Dihydroxycholecalciferol, in Rats". The Journal of Nutrition135 (7): 1647–1652. PMID 15987844.
  70. Jump up^  Science News. Water-soluble vitamin A shows promise.
  71. Jump up^  Myhre AM, Carlsen MH, Bøhn SK, Wold HL, Laake P, Blomhoff R (2003). "Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations". The American Journal of Clinical Nutrition78 (6): 1152–9. PMID 14668278.
  72. Jump up^  Kull I, Bergström A, Melén E, Lilja G, van Hage M, Pershagen G, Wickman M (2006). "Early-life supplementation of vitamins A and D, in water-soluble form or in peanut oil, and allergic diseases during childhood". The Journal of Allergy and Clinical Immunology118 (6): 1299–304. doi:10.1016/j.jaci.2006.08.022PMID 17157660.
  73. Jump up^  USA Today - News (10 October 2011). "Study flags risk of daily vitamin use among older women". Retrieved 1 May 2012.
  74. Jump up^  Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2008). "Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases"The Cochrane Database of Systematic Reviews (2): CD007176. doi:10.1002/14651858.CD007176PMID 18425980.
  75. Jump up^  American Cancer Society: Retinoid Therapy
  76. Jump up^  Vivat-Hannah V, Zusi FC (2005). "Retinoids as therapeutic agents: today and tomorrow". Mini Reviews in Medicinal Chemistry5 (8): 755–60. doi:10.2174/1389557054553820PMID 16101411.

Further reading

External links

PRODIGY-5

ALL IN ONE NUTRITIONAL WITH TRANS-ARMOR® NUTRIENT TECHNOLOGY

BREAKTHROUGH TECHNOLOGY IN PRODIGY 5.

THE FIVE UNIQUE ATTRIBUTES

A revolutionary new product featuring five unique attributes that create an all-in-one nutritional experience for everyone, every day. Take advantage of the technology and know-how, and enjoy the benefits of the phytoplankton, antioxidants, vitamins, and energy you can feel in minutes with the new ForeverGreen product: Prodigy-5.

Vitamins in Prodigy-5

We all know that vitamins and minerals are essential to our overall health, yet many of us are left not getting most of the vitamins and minerals we need through our normal eating habits. Prodigy-5 features a unique blend of vitamins and minerals that were each specifically chosen using the best peer reviewed scientific research available to support your general and eye health.  

Technology & Know-how behind Prodigy-5

​Adam Saucedo, M.D., has teamed up with the brilliant mind of Balamurali Ambati, M.D., PhD, MBA to bring you the exclusive TransArmor™ Nutrient Technology, found only in Prodigy-5. The patent-pending TransArmor™ technology increases the transit time of nutrients through the digestive system and primes the body for increased absorption of these nutrients.

Antioxidants in Prodigy-5

Prodigy-5 features natural pomegranate and raspberry for a bold flavor that also delivers powerful antioxidants! Antioxidants help to rid the body of damaging free radicals. Antioxidants become a powerful defense system to these free radicals, which if left unchallenged, can contribute to the cause of a range of health problems. Raspberries and pomegranates, Marine phytoplankton, Curcuma.

Phytoplankton in Prodigy-5

The most fundamental nutrient on the planet, phytoplankton are microscopic plant-based organisms that generate most of the world’s oxygen. Phytoplankton, found naturally in both salt and fresh water, are a viable source of vitamins, minerals, amino acids, and other micronutrients.

Energy of the Prodigy-5

Prodigy-5 features natural green tea extract, which is known to help increase energy and mental focus. It helps provide the alertness associated with caffeine without the jittery side effects! Green tea has a range of health benefits, and also contains powerful antioxidants, making it the perfect way to get a little extra boost with your daily dose of Prodigy-5.

PRODIGY-5 DEVELOPED BY MEDICAL INDUSTRY LEADERS

Prodigy-5 revolutionaly Trans-Armor™ nutrient technology, developed by medical industry leader doctors aids the body in absorbing more of the nutrition than it normally would, thereby increasing efficiencies and overall health.

In addition to this scientifically proven technology, Prodigy-5 is considered an all-in-one nutritional habit.

Dr. Ambati, child prodigy, and ForeverGreen’s own Research Scientist Adam Saucedo have partnered together and developed what is being called the check-mate in the conversation of nutrition, Prodigy-5.

DR. AMBATI

CHILD PRODIGY

Dr. Ambati started calculus at age 4, graduated high school at age 11, pre-med age 13, med-school at 14 and was announced the Guinness Book of World Records holder for youngest doctor at age 17.

DR. ADAM SAUCEDO

RESEARCH SCIENTIST

Dr. Adam Saucedo is ForeverGreen’s own Research Scientist, founder and Chief Medical Adviser of the Center for the Heart and Founder of the New Life Center; the largest eating disorder clinic in the world.

DID YOU KNOW THAT HUMAN STOMACH ACIDS ARE STRONG ENOUGH TO DISSOLVE A RAZOR BLADE?

This means that your stomach acids act like a wall, preventing supplements and nutrients from passing to your blood stream and cells; only a percentage survives. Plain English? Your body gets only a fraction of the nutrients it digests. So, this begs the question, Can it be changed?

Can we use modern science to get more out of the digestive process? The answer is a very exciting yes!

Prodigy-5 with the perfect micro-nutrient formula featuring “Trans-Armor Nutrient Technology” that can quickly deliver the nutrients you need throughout your entire body and has the ability to increase the absorption and utilization of those nutrients to maximize your results. With this ground-breaking technology and formula, Prodigy-5 is the solution to the global problem of malnutrition.

With today’s nutritionally bankrupt foods, and the bodies inability to absorb 100% of even the healthiest whole foods, malnutrition effects every singe one of us. Whether you are healthy, wealthy, poor or starving, every person on this planet needs the nutritional revolution offered in Prodigy-5. It is literally for EVERYONE, EVERY DAY.

Prodigy-5 delivers a new TransArmor™ Nutrition bio-enhancing technology.
See how it works:

Prodigy-5 revolutionaly Trans-Armor™ nutrient technology, developed by medical industry leader doctors aids the body in absorbing more of the nutrition than it normally would, thereby increasing efficiencies and overall health. In addition to this scientifically proven technology, Prodigy-5 is considered an all-in-one nutritional habit.

Prodigy 5 contains the new "Trans-Armor™" delivery technology that provides nutrition and energy at the highest level of absorption to our body's cells, including:

• a micronutrient formula for general health,
• a micronutrient formula for eye health,
• an impressive antioxidant profile,
• an impressive and new bio-enhancing absorption technology


Does not contain artificial sweetners or additives. Sweetened with Pomegranate, Raspberry, and Stevia.

PRODIGY-5 HIGHLIGHT

PHYTOPLANKTON

One of those rare products that contains almost everything you need for life (and the rebuilding of cells) is marine phytoplankton.

Marine phytoplankton are one-cell plants that are too small to be seen individually without the aid of a microscope. Because they are microscopic, the body’s cells can absorb them immediately (bioavailability) and receive all of their valuable nutrients at the same time for maximum effectiveness.

The marine phytoplankton, also known as a “Superfood”, is according to NASA and plenty of scientific researches the most important plant and food in the world as it provides the earth with over 90% of it’s oxygen. Marine phytoplankton is not only an important source of oxygen it is a critical food source for ocean life and apparently, for us too.

There are very few (foods) that provide all, or even most, of the raw materials to make new cells and sustain the existing ones. A complete super food, these amazing plants contain more than 90 nutrients vital for a healthy body.

It contains all nine amino acids that the body cannot make. The essential fatty acids are also present (Omega-3 and Omega-6). Further it contains the most important vitamins and mineral nutrients. For example vitamin C, H, B1, B2, B3, B6, B12, E, selenium, zinc, chromium, magnesium, calcium, nickel, iron and many more. (General informations about vitamins)

These valuable nutrients are essential for the production of healthy new cells. We all have, at one time or another, cellular or energy blockages, whether they be emotional or physical. And, among the functional ingredients identified from marine algae, natural pigments (NPs) have received particular attention.

Some benefits (but not all) of marine phytoplankton include:

Support Cardiovascular Health: The high level of antioxidants, amino acids, and high levels of omega-3 fatty acids are known to support a healthier cardiovascular system.

Promotes Healthy Skin: There are large amounts of bioflavonoids that can remove toxins from skin cells. Marine phytoplankton also contains riboflavin that reduces free radical attacks in skin cells.

Boost the Immune System: Alanine, beta-carotene, bioflavonoids, and vitamin E are all immune system enhancers found in this superfood.

Increase Energy: Marine phytoplankton detoxifies the body, and eliminates toxins from the cells. This will improve your energy and mood levels.

Stabilizes Blood Sugar Levels: Marine phytoplankton is really good for stabilizing blood sugar levels. Chromium helps to prevent and moderate against diabetes. Glutamic acids help to reduce alcohol and sugar cravings. Phenylalanine is a known sugar craving reducer.

Helps with Joint Health: Manganese helps to assist in joint mobility. Omega-6 fatty acids can relieve symptoms of arthritis. Pathogenic acid can reduce morning pain caused by arthritis. It will help a lot with joint mobility, and reducing pain and stiffness.

Liver Support: The arginine is found in this superfood and is known to help detoxify the liver.

Improves Brain Function: The high amount of omega-3 fatty acids improve brain function. The nucleic acids can enhance the memory. Phenylalanine improves mental clarity. Proline increases learning ability. Magnesium helps reduce mood swings.

More information about phytoplankton

PRODIGY-5 HIGHLIGHT

VITAMINS AND MINERALS

MICRONUTRIENT FORMULA FOR GENERAL HEALTH

Vitamin A • Vitamin C • Vitamin D • Vitamin E • Vitamin K • Vitamin B6 • Vitamin B12 • Folate • B1 (Thiamin) • B2 (Riboflavin) • B3 (Niacin)



MICRONUTRIENT FORMULA FOR EYE HEALTH

Lutein • Zeaxanthin • Copper • Zinc

Vitamins have specific role to play in the natural wear and tear of the body. There are many vitamin benefits that have a major impact on our overall health.
Vitamins are divided into two types: fat soluble and water soluble. Fat soluble vitamins (vitamin A, D, E and K) are stored in the fat tissues and liver. They can remain in the body up to six months. When the body requires these, they are transported to the area of requirement within the body with help of special carriers. Water soluble vitamins (B-vitamins and vitamin C) are not stored in the body like the fat soluble ones. They travel in the blood stream and need to be replenished everyday.


Below is a list of the 13 major vitamins and what each does for your body:

Prodigy-5 contains: Vitamin A (Beta-Carotene) is a natural antioxidant. It belongs to a class of pigments known as carotenoids which include the yellow, red and orange pigments that give many vegetables and plants their coloring. Vitamin A has been found to enhance immune system functions by supporting and promoting the activities of white blood cells as well as other immune related cells. It also helps to inhibit free radicals and their damaging effects which have been associated with arthritis, heart disease and the development and progression of malignant cells (cancer). Beta-carotene is a precursor for vitamin A (approximately 6 mg of ß-carotene = 1 mg vitamin A). Beta-carotene is best known for the body’s ability to convert it into retinal, which is essential for good vision and visual health, skin, and immune functions.
Natural sources of beta-carotene include carrots, pumpkin, sweet potato, spinach, kale, collard and turnip greens, and winter squash.

According to the National Institutes on Health, the average adult male should be getting 900mcg of vitamin C each day. Females should be getting 700mg a day. Individuals with special needs (women who are pregnant, smokers) may have different requirements and should consult their health professional.

Prodigy-5 contains: Vitamin B1 (Thiamin) is a water-soluble B-vitamin involved with many cellular functions including carbohydrates metabolism, break down of amino acids, production of certain neurotransmitters and multiple enzyme processes (through the coenzyme thiamin pyrophosphate, or TPP). Thiamin can be found in small amounts in a wide variety of foods. Pork, sunflower seeds, yeast, peas and wheat are a few examples. Very little thiamin is stored within the body and must be consumed on a regular basis. A deficiency may result in weakness, loss of appetite, nerve degeneration and irritability.

Prodigy-5 contains: Vitamin B2 (Riboflavin), like most B-vitamins, is involved in many cellular functions. Riboflavin is important in energy metabolism, folate synthesis, conversion of tryptophan to niacin and acts as important coenzymes (FAD/FMN) involved in many reactions. It can be found in liver, mushrooms, spinach, milk, eggs and grains. Because it is water-soluble, there is minimal storage of riboflavin within the body and when dietary intake is insufficient, deficiency can occur (usually accompanied with other vitamin deficiencies).

Prodigy-5 contains:Vitamin B3 (Niacin), also referred to as nicotinamide and nicotinic acid, is another water-soluble, B-vitamin involved with energy metabolism. The coenzymes of niacin (NAD/NADH/NADP/NADPH) are necessary for ATP synthesis (the body’s main energy source), synthesis of fatty acids and some hormones and the transport of hydrogen atoms. When niacin levels are low, the body can use L-tryptophan (an essential amino acid) to manufacture the vitamin. This process is not ideal, however, as it can rapidly deplete L-tryptophan in the body and take away from its other needs such as maintaining optimal levels of serotonin and melatonin. Niacin can be found in grains, liver, fish and chicken.

Prodigy-5 contains: Vitamin B6 is a water-soluble vitamin which plays a variety of important roles in numerous biological processes. Humans cannot produce vitamin B6 so it must be obtained from the diet. Adequate sources of B6 include meats (salmon, turkey, chicken) and whole grain products, such as spinach, nuts and bananas. There are three forms of vitamin B6: pyridoxal (PL), pyridoxine (PN) and pyridoxamine (PM). Pyridoxal-5′-phosphate (PLP) is the principal coenzyme form and has the most importance in human metabolism. It acts as a cofactor for many enzymatic reactions involving L-tryptophan, including L-tryptophan’s conversion to serotonin, an important neurotransmitter in the brain. Pyridoxal-5′-phosphate is also involved in other enzymatic reactions where other neurotransmitters, such as gamma-aminobutyric acid (GABA), are synthesized. This plays a critical role in the functions of the nervous system.
Regarding cardiovascular health, there is an association between low vitamin B6 intake with increased blood homocysteine levels and increased risk of cardiovascular diseases, which has been documented in several large observational studies. Vitamin B6, along with folic acid, vitamin B5, vitamin B12 and niacin, is involved in cell metabolism, enhances the immune system, supports the functions of the nervous system, aids in carbohydrate metabolism to produce energy and promotes cognitive health. Vitamin B6 is necessary for the conduction of nerve impulses, regulation of steroid hormones, catabolism of glycogen to glucose, heme synthesis, and the synthesis/ metabolism of amino acids and neurotransmitters.

Prodigy-5 contains: Vitamin B12 is a water-soluble vitamin essential for numerous processes in the body. The richest food sources of vitamin B12 include animal products such as meat, poultry and fish. It is not generally present in plant products with the exeption of peanuts and soybeans which absorb vitamin B12 from bacteria-filled nodules growing on the roots of these plants. Cyanocobalamin is the form most commonly used in supplements but it must be converted into methylcoblamin before it can join the metabolic pool and be properly utilized by the body. Vitamin B12 is also available as methylcobalamin, which is the methylated form, allowing it to become active quicker and be more effective. Vitamin B12 is necessary for countless processes within the body; it transfers methyl groups, plays a part in DNA synthesis and regulation, helps facilitate cell synthesis, maturation and division, helps convert homocysteine to methionine playing a role in cardiovascular protection, aids in the proper functioning of the nervous system, participates in the metabolism of carbohydrates, proteins and fats, helps produce SAMe for mood and cognitive health and also helps produce energy.

Prodigy-5 contains: Vitamin C (Ascorbic acid) is a water-soluble antioxidant essential for human health and life. It has been proven necessary for healthy immune responses, wound healing, non-heme iron absorption (coming from grains and vegetables), reduction in allergic responses, development of connective tissue components such as collagen, and for the prevention of diseases. Vitamin C has also been shown to be important for cardiovascular health, reducing free radicalproduction and free radical damage, and good cognitive health and performance.
Due to human’s inability to produce vitamin C, it is essential to ingest sources containing vitamin C on a regular, if not daily basis. Natural sources of vitamin C include oranges, guavas, peppers (green, red, yellow), kiwis, strawberries, cantaloupes, Brussels sprouts, broccoli, and many other fruits and vegetables.

Prodigy-5 contains: Vitamin D is a fat-soluble vitamin essential for normal growth and development, the formation and maintenance of healthy bones and teeth, and influences the absorption and metabolism of phosphorus and calcium. It is necessary for proper muscle functioning, bone mineralization and stability, and multiple immune functions. Primarily the vitamin D used by the body is produced in the skin after exposure to ultraviolet light from sunlight. Lack of exposure to sunlight, reduced ability to synthesize vitamin D in the skin, age, low dietary intake, or impaired intestinal vitamin D absorption can result in deficiency. Deficiency has been associated with rickets (poor bone formation), porous or weak bones (osteopenia, osteoporosis), pain and muscle weakness, increased risk for cardiovascular disease, impaired cognitive health, and the development and progression of malignant cells (cancer).
Natural food sources of vitamin D are few; these foods are eggs from hens that have been fed vitamin D or fatty fish such as herrings, mackerel, sardines and tuna. Due to low vitamin D levels, countries such as the United States and Canada have opted to fortify foods such as milk and other dairy products, margarines and butters, some natural cereal and grain products.
According to the National Institutes on Health, the average adult should be getting 600IU of vitamin D each day. Individuals with special needs (the elderly, women who are pregnant) may have different requirements and should consult their health professional.

Prodigy-5 contains: Vitamin E is one of the most powerful fat-soluble antioxidants in the body. It has been proven to help promote cardiovascular health, enhanced immune system function, aid in skin repair and to protect cell membranes from damage caused by free radicals. Vitamin E contributes to proper blood flow and clotting as well as cognitive health and function.
Natural sources of vitamin E include herbs such as cloves and oregano, whole grains, nuts and seeds, wheat germ, avocado, egg yolks, and vegetables/fruits such as dark leafy greens, peppers (red, yellow, orange, green), tomatoes, and mangos. Other sources are vegetable oils, margarines, and fortified cereals.

Prodigy-5 contains: Folic Acid is water-soluble vitamin important for many aspects of health. Sources of folic acid include dark, green leafy vegetables such as spinach or asparagus, fortified cereals, orange juice and legumes. Folic acid (folate) must go through a series of chemical conversions before it becomes metabolically active to be properly utilized within the body.
Folinic acid is the highly bioavailable, metabolically active derivative of folic acid and does not require the action of the enzyme dihydrofolinate reductase to become active, so it’s not affected by medicines and herbs that inhibit this enzyme. Adequate folate is necessary for proper DNA and RNA synthesis in regards to fetal growth and development. Due to these effects, the U.S. Public Health Service recommends all women capable of becoming pregnant consume 400 mcg of folic acid daily to prevent neural tube defects.
In addition to its clear effects on fetal growth and development, folic acid also plays an important role in cardiovascular health. By aiding in the conversion of homocysteine to methionine, it has been shown to reduce the levels of homocysteine, a sulfur containing amino acid. In the absence of adequate folic acid levels, homocysteine levels increase and high homocysteine levels are associated with atherosclerosis and the reduced circulation of oxygen and nutrients to the heart, ears and other organs. These results have been documented in countless studies. Folic acid, along with vitamin B6, vitamin B5, vitamin B12 and niacin, is involved in cell metabolism, enhances the immune system, supports the functions of the nervous system, aids in carbohydrate metabolism to produce energy and promotes cognitive health.

Prodigy-5 contains: Vitamin K, a generic term for a group of fat soluble vitamins, are involved mostly in the process of blood clotting, but also needed in metabolic pathways of bones and other tissues. The most well known are vitamin K1, also known as phylloquinone, and vitamin K2, known as menaquinone. Vitamin D and vitamin K work together in bone metabolism and development. Vitamin K works against oral anticoagulants such as 4-hidroxikumarin, and excessive vitamin K intake, either through supplementation or a change in diet, can reduce the anticoagulant effect. Vitamin K1 is mainly found in leafy green vegetables (such as spinach, swiss chard and kale), avocado and kiwi fruit; vitamin K2 can be found in meat, eggs, and dairy and is also synthesized by bacteria in the colon.

More information about vitamins

PRODIGY-5 HIGHLIGHT

ANTIOXIDANTS


WHAT ARE OXIDANTS?

Oxidants are free radicals that either our bodies produce or we get from the environment. Our bodies create oxidants as a response to stress or poor diet, or we are exposed to oxidants through environmental factors like pollution. Oxidative damage is a contributing factor to many diseases, including muscle and tissue degeneration, heart disease, diabetes, cancer, and many other health problems.


WHAT ARE FREE RADICALS?

Free radicals are atoms or groups of atoms with an odd (unpaired) number of electrons. They are like bullies that are low in energy and attack healthy cells and steal their energy to satisfy themselves. Free radicals cause damage to our blood vessels, which can lead to deposits of bad cholesterol and block arteries. Free radicals come in many shapes, sizes, and chemical configurations. What they all share is a voracious appetite for electrons, stealing them from any nearby substances that will yield them.

The human body naturally produces free radicals and the antioxidants to counteract their damaging effects. However, in most cases, free radicals far outnumber the naturally occurring antioxidants. In order to maintain the balance, a continuous supplemental source of external antioxidants are necessary in order to obtain the maximum benefits of antioxidants.


WHAT ARE ANTIOXIDANTS AND WHY DO WE NEED THEM?

Antioxidants are the nutrients’ police force! They are free radical scavengers! They get rid of the bullies! Antioxidants are like a million microscopic special ops on a mission to save your body from the inside out. The benefits of antioxidants are very important to good health, because if free radicals are left unchallenged, they can cause a wide range of illnesses and chronic diseases.

WHERE CAN WE FIND ANTIOXIDANTS?

Obtained through our foods and produced by are bodies, antioxidants are a powerful defense system.
Antioxidants can be found in flavonols (found in chocolate), resveratrol (found in wine), Ellagic acid (found in Raspberries and pomegranate), and lycopene (found in tomatoes). Other popular antioxidants include vitamins A (beta-carotene), C, E, and catechins.

GREAT SOURCES OF ANTIOXIDANTS IN PRODIGY-5

Marine phytoplankton, Raspberries, Pomegranates, Curcuma

Raspberries and pomegranates contain one of the most powerful antioxidants known, Ellagic acid. Ellagic acid is a potent natural antioxidant that can be found in raspberries and pomegranates. Ellagic acid has been shown to be an effective anti- mutagen and anti-carcinogen.

Anthocyanins (red flavonoid pigment found in plants) give pomegranates their red color and offer a strong serving of antioxidants. Punicalagins (a type of phenolic compound) specifically support cardiovascular and neurological health. Studies have shown that antioxidants 18. can play a role in reducing the cell damage of free radicals.

ANTIOXIDANTS AND AGING

Antioxidants are powerful molecules that support healthy aging in more ways than one. These potent compounds aid in an overall healthy lifestyle by supporting cellular health. Aging isn’t about your chronological age; it is more about the amount of stress in your life and the the function of your cells!

More information about antioxidants

ORDER PRODIGY-5

 
 
buy prodigy5
buy prodigy5
 

Becoming a member gives you the advantage of shopping on discounted member prices next time you purchase. Moreover ForeverGreen brings the power of the global economy to every doorstep. By offering unique, effective and high-impact products that fit in an envelope, ForeverGreen allows anyone, anywhere to build a successful global business. Whether you’re interested in a little extra income or building a long-term viable business, you’re in the right place with ForeverGreen.

 

PRODIGY 5 PRICES


PRODIGY-5 Single Case
(One case contains 28 serving) prices
$ 75.95
€ 69.11
Prodigy 5 Single DEF small

PRODIGY-5 Double Case 
(One case contains 28 serving) prices
$ 149.95
€ 136.45
Prodigy 5 Double DEF small

You will be redirected to ForeverGreen's official webshop.
Select your country and you'll find Prodigy-5 in the left column, in the strips products group.

ForeverGreen are shipping worldwide.

Az eredeti Powerstrips fejlesztőjének, Dr. Minsoo Kim legújabb tapasz fejlesztésére váltottunk:
BEPIC - ALLEVI8 PRO
Nagyobb hatékonyság, jobb ár, megbízhatóbb szállítás!

www.bepic.com/shop

We have changed! More efficiency, better price, more reliable delivery!
We've switched to the latest product from the original Powerstrips developer, Dr. Minsoo Kim: BEPIC - ALLEVI8 PRO

Wir haben uns verändert! Mehr Effizienz, besserer Preis, zuverlässigere Lieferung!
Wir haben auf das neueste Produkt des ursprünglichen Entwicklers von Powerstrips, Dr. Minsoo Kim, umgestellt: BEPIC - ALLEVI8 PRO

Мы изменились! Больше эффективности, лучше цена, надежнее доставка!
Мы перешли на новейший продукт от оригинального разработчика Powerstrips, доктора Минсу Кима: BEPIC - ALLEVI8 PRO

Nous avons changé ! Plus d'efficacité, un meilleur prix, une livraison plus fiable !
Nous sommes passés au dernier produit du développeur original de Powerstrips, le Dr Minsoo Kim : BEPIC - ALLEVI8 PRO

Siamo cambiati! Più efficienza, prezzo migliore, consegna più affidabile!
Siamo passati all'ultimo prodotto dello sviluppatore originale di Powerstrips, il Dr. Minsoo Kim: BEPIC - ALLEVI8 PRO

TERMÉKLEÍRÁS | PRODUCT DETAILS
> PDF <