THE PRODIGY-5 MICRONUTRIENT FORMULA FOR GENERAL HEALTH: Vitamin A • Vitamin C • Vitamin D • Vitamin E • Vitamin K • Vitamin B6 • Vitamin B12 • Folate • B1 (Thiamin) • B2 (Riboflavin) • B3 (Niacin) 

MICRONUTRIENT FORMULA FOR EYE HEALTH: Lutein • Zeaxanthin • Copper • Zinc 

 

Vitamin E

From Wikipedia, the free encyclopedia
 
 
Vitamin E
Drug class
Tocopherol, alpha-.svg
The α-tocopherol form of vitamin E
Class identifiers
Use Vitamin E deficiencyantioxidant
ATC code A11H
Biological target Reactive oxygen species
Clinical data
Drugs.com MedFacts Natural Products
External links
MeSH D014810

Vitamin E refers to a group of compounds that include both tocopherols and tocotrienols.[1][2] Of the many different forms of vitamin E, γ-tocopherol is the most common form found in the North American diet.[3] γ-Tocopherol can be found in corn oil, soybean oil, margarine, and dressings.[4][5] α-tocopherol, the most biologically active form of vitamin E, is the second-most common form of vitamin E in the diet. This variant can be found most abundantly in wheat germ oil, sunflower, and safflower oils.[5][6] As a fat-soluble antioxidant, it interrupts the propagation of reactive oxygen species that spread through biological membranes or through a fat when its lipid content undergoes oxidation by reacting with more-reactive lipid radicals to form more stable products.[7][8][9][10] Regular consumption of more than 1,000 mg (1,500 IU) of tocopherols per day[1] may be expected to cause hypervitaminosis E, with an associated risk of vitamin K deficiency and consequently of bleeding problems.

Forms

The nutritional content of vitamin E is defined by α-tocopherol activity. The molecules that contribute α-tocopherol activity are four tocopherols and four tocotrienols, identified by the prefixes alpha- (α-), beta- (β-), gamma- (γ-), and delta- (δ-).[11] Natural tocopherols occur in the RRR-configuration only. The synthetic form contains eight different stereoisomers and is called 'all-rac'-α-tocopherol.[12] Water-soluble forms such as d-alpha-tocopheryl succinate are used as food additive.[citation needed]

α-Tocopherol

 
Sample of α-tocopherol, one of the various forms of vitamin E

alpha-Tocopherol is an important lipid-soluble antioxidant. It performs its functions as antioxidant in the glutathione peroxidase pathway,[13] and it protects cell membranes from oxidation by reacting with lipid radicals produced in the lipid peroxidation chain reaction.[9][14] This removes the free radicalintermediates and prevents the oxidation reaction from continuing. The oxidized α-tocopheroxyl radicals produced in this process may be recycled back to the active reduced form through reductionby other antioxidants, such as ascorbateretinol or ubiquinol.[15] Other forms of vitamin E have their own unique properties; for example, γ-tocopherol is a nucleophile that can react with electrophilicmutagens.[16]

Tocotrienols

Compared with tocopherols, tocotrienols are sparsely studied.[17][18]

Functions

Vitamin E has many biological functions, including its role as a fat-soluble antioxidant.[1]

  • As an antioxidant, vitamin E acts as a peroxyl radical scavenger, disabling the production of damaging free radicals in tissues, by reacting with them to form a tocopheryl radical, which will then be reduced by a hydrogen donor (such as vitamin C) and thus return to its reduced state.[19] As it is fat-soluble, it is incorporated into cell membranes, which protects them from oxidative damage. Vitamin E has also found use as a commercial antioxidant in ultra high molecular weight polyethylene (UHMWPE) used in hip and knee implants to replace faulty joints, to help resist oxidation.[20]
  • As an enzymatic activity regulator, for instance, protein kinase C (PKC), which plays a role in smooth muscle growth, can be inhibited by α-tocopherol. α-Tocopherol has a stimulatory effect on the dephosphorylation enzyme, protein phosphatase 2A, which in turn, cleaves phosphate groups from PKC, leading to its deactivation, bringing the smooth muscle growth to a halt.[21]
  • Vitamin E also has an effect on gene expressionMacrophages rich in cholesterol are found in the atherogenetic tissue. Scavenger receptor CD36 is a class B scavenger receptor found to be up-regulated by oxidized low density lipoprotein (LDL) and binds it.[22] Treatment with α-tocopherol was found to downregulate the expression of the CD36 scavenger receptor gene and the scavenger receptor class A (SR-A)[22] and modulates expression of the connective tissue growth factor (CTGF).[23][24] The CTGF gene, when expressed, is responsible for the repair of wounds and regeneration of the extracellular tissue lost or damaged during atherosclerosis.[24]
  • Vitamin E also plays a role in eye and neurological functions,[1][25] and inhibition of platelet coagulation.[26][27][28]
  • Vitamin E also protects lipids and prevents the oxidation of polyunsaturated fatty acids.[29]

So far, most human supplementation studies about vitamin E have used only α-tocopherol. This can affect levels of other forms of vitamin E, e.g. reducing serum γ- and δ-tocopherol concentrations. Moreover, a 2007 clinical study involving α-tocopherol concluded supplementation did not reduce the risk of major cardiovascular events in middle-aged and older men.[30]

Deficiency

Main article: Vitamin E deficiency

Vitamin E deficiency can cause:

Supplementation

Vitamin E supplementation has not been shown to have significant benefit for people who are healthy, and appears to be harmful.[33][34] It does not improve blood sugar control in an unselected group of people with diabetes mellitus[35] or decrease the risk of stroke.[36] Daily supplementation of vitamin E does not decrease the risk of prostate cancer, and may increase it.[1][37] Studies on its role in age-related macular degeneration are ongoing, though if it is of a combination of dietary antioxidants used to treat the condition it may increase the risk.[38] Routine supplementation with vitamin E during pregnancy has been shown to offer no benefit to the mother or the child. Vitamin E has been reported to cause more side effects, such as abdominal pain in pregnant women, and also the increased risk of having early rupture of membranes at term.[39]

Vitamin E, along with β-carotene and vitamin C, has no protective effect on reducing the risk of cataract, cataract extraction, progression of cataract, and slowing the loss of visual acuity.[40]

Clinical applications

Vitamin E and its analogs are used to prevent and repair cell and tissue damage during radiation therapy. Vitamin E with adjuvant Evening Primrose Oil may reduce breast pain.[41]

The use of vitamin E in the treatment of some cancers is beneficial. Vitamin E and its derivatives promote tumor susceptibility of ionizing radiation during cancer treatment.[42]

Toxicity

Main article: Hypervitaminosis E

The LD50, or the toxic dose required to kill 50% of group of rats and mice, respectively is 4000 mg of VitaminE E/kg of rat and 4000 mg of Vitamin E/kg of mouse.[43] Comparatively speaking, and at lethal doses, Vitamin E is less toxic than table salt and acetaminophen and it is more toxic than ethanol and Vitamin C. Vitamin E can act as an anticoagulant, increasing the risk of bleeding problems. As a result, many agencies have set a tolerable upper intake levels (UL) at 1,000 mg (1,500 IU) per day.[1] In combination with certain other drugs such as aspirin, hypervitaminosis E can be life-threatening.[citation needed] Hypervitaminosis E may also counteract vitamin K, leading to a vitamin K deficiency.[citation needed]

Dietary sources

mg/(100 g)
[note 1]
Some foods with vitamin E content[8]
low high
150 Wheat germ oil
44 Canola/rapeseed oil
41 Sunflower oil
95 Almond oil
34 Safflower oil
26 Almonds
19 Wheat germ
15 Palm oil[44]
15 Hazelnuts
14 Olive oil
12.2 Common purslane[45]
8.33 Peanut
1.5 3.4 High-value green, leafy vegetables: spinachturnipbeet greens, collard greens, and dandelion greens[note 2]
2.32 Butter
2 Avocados[46]
1.8 Cocoa butter
1.4 Sesame oil[47]
1.1 1.5 Asparagus[note 3]
1.5 Kiwifruit (green)
0.90 Cashew nuts
0.78 1.5 Broccoli[note 4]
0.8 1 Pumpkin[note 5]
0.26 0.94 Sweet potato[note 6]
0.9 Mangoes
0.7 Walnuts
0.54 0.56 Tomatoes[note 7]
0.36 0.44 Rockfish[note 8]
0.3 Papayas
0.25 Tahini
0.13 0.22 Low-value green, leafy vegetables: lettuce[note 9]

Dietary Reference Intake

The Food and Nutrition Board (FNB) of the U.S. Institute of Medicine updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for vitamin E in 2000. The current EAR for vitamin E for women and men ages 14 and up is 12 mg/day. The RDA is 15 mg/day. RDAs are higher than EARs so as to identify amounts that will cover people with higher than average requirements. RDA for pregnancy equals 15 mg/day. RDA for lactation equals 19 mg/day. For infants up to 12 months the Adequate Intake (AI) is 4–5 mg/day and for children ages 1–13 years the RDA increases with age from 6 to 11 mg/day. The FNB also sets Tolerable Upper Intake Levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of vitamin E the UL is 1,000 mg/day.[48] Collectively the EARs, RDAs and ULs are referred to as Dietary Reference Intakes. The European Food Safety Authority reviewed the same safety question and set a UL at 300 mg/day.[49]

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value (%DV). For vitamin E labeling purposes 100% of the Daily Value was 30 mg, but as of May 2016 it has been revised to 15 mg. A table of the pre-change adult Daily Values is provided at Reference Daily Intake. Food and supplement companies have until July 28, 2018 to comply with the change.

History

Vitamin E was discovered in 1922 by Herbert McLean Evans and Katharine Scott Bishop[50] and first isolated in a pure form by Gladys Anderson Emersonin 1935 at the University of California, Berkeley.[51] Erhard Fernholz elucidated its structure in 1938 and shortly afterwards the same year, Paul Karrer and his team first synthesized it.[52]

The first use for vitamin E as a therapeutic agent was conducted in 1938 by Widenbauer, who used wheat germ oil supplement on 17 premature newborn infants suffering from growth failure. Eleven of the original 17 patients recovered and were able to resume normal growth rates.[53]

In 1945, Drs. Evan V. Shute and Wilfred E. Shute, siblings from Ontario, Canada, published the first monograph arguing that megadoses of vitamin E can slow down and even reverse the development of atherosclerosis.[54] Peer-reviewed publications soon followed.[55][56] The same research team also demonstrated, in 1946, that α-tocopherol improved impaired capillary permeability and low platelet counts in experimental and clinical thrombocytopenicpurpura.[57]

Later, in 1948, while conducting experiments on alloxan effects on rats, Gyorge and Rose noted rats receiving tocopherol supplements suffered from less hemolysis than those that did not receive tocopherol.[58] In 1949, Gerloczy administered all-rac-α-tocopheryl acetate to prevent and cure edema.[59][60]Methods of administration used were both oral, that showed positive response, and intramuscular, which did not show a response.[53] This early investigative work on the benefits of vitamin E supplementation was the gateway to curing the vitamin E deficiency-caused hemolytic anemia described during the 1960s. Since then, supplementation of infant formulas with vitamin E has eradicated this vitamin’s deficiency as a cause for hemolytic anemia.[53]

Vitamin E supplementation and cardiovascular disease

Vitamin E and atherosclerosis

Atherosclerosis is a disease condition refer to the buildup of plaque, which is a substance containing lipid and cholesterol (mainly the low-density lipoprotein or LDL cholesterol) on the inner layer of the arterial lumen.[61] With the existing plaque, instead of being smooth and elastic, the layers become thickened and irregular and the lumen of the artery become narrower. This vessel-narrowing effect lead to a reduction of blood circulation and can lead to or worsen the condition of hypertension.[62]

There are currently multiple theories explaining factors causing and affecting the cholesterol plaque build up within arteries with the most popular theory indicating that the rate of build up is affected by the oxidation of the LDL cholesterol. LDL cholesterol is one of the five major groups of lipoproteins with one of the physiological roles being lipid transportation. A typical LDL particle contain 2,700 fatty acid molecules and half of them are poly-unsaturated fatty acids, which are very oxidation sensitive.[63] Once the oxidation of LDL occur, it will start a series of undesirable effects starting from the increase production of inflammatory cytokines by stimulating the endothelial cells and monocytes, followed by increased production of tissue factors, production of macrophages and monocytes, which eventually lead to the formation of foam cells and accelerated development of atherosclerosis. With the presence of adequate concentration of vitamin E, which is a very potent fat-soluble antioxidant, it can inhibit the oxidation of LDL, and this inhibition contributes protection against the development of atherosclerosis and can stabilize the existing plaque.[63]

Critical evaluation of current related literature

Interpreting the science jargon of the following paragraphs: If human trials are similar enough in design and measurements, a statistical analysis can be conducted on the combined results. This is called a meta-analysis. Controversies arise when different authors disagree on the criteria to use to include or exclude trials. An odds ratio (OR) indicates whether a treatment helped or harmed compared to control. In the first example below, an OR = 0.74 means that the risk of cardiovascular disease was reduced by 26%. An inverse association (the next referenced example) means that the higher the dose, the lower the risk. Odds ratio and relative risk sort of mean the same thing (unless you are a statistician). The paragraphs below are in conflict. The first reports on observing how much vitamin E subjects chose to consume, and their disease outcome. The second describes RCTs, i.e., randomized clinical trials, in which subjects are assigned to get or not get vitamin E, without knowing which group they are in, and tracking results. The conclusion of observational studies is a benefit; the conclusion of RCTs is no benefit. (As indicated by the ORs being close to 1.00, meaning no effect. An OR higher than 1.00 indicates harm.)

According to Asplund (2002)’s [64] meta-analysis, nine cohort studies showed that high intake of tocopherol was associated with a lower risk of CVD events compared with lower intake. The odds ratio (OR) was 0.74 (95% confidential interval (CI): 0.66-0.83). In this study, higher dietary, supplementation and combined vitamin E intake was also associated with lower CHD incidents, as presented in Appendix II. A large cohort study conducted by Rimm et al.[65] in 1993 included 39,919 male health professionals aged between 40 and 75 showed that consumption of more than 60 IU of vitamin E (any form) per day was associated with a lower incidence of CHD compared with less than 7.5 IU/day intake. This study also showed an inverse association between vitamin E supplementation and the incidence of CHD. The relative risk (RR) of at least 100 IU/day for at least two years was 0.63 (95% CI: 0.47-0.84). A European cohort study was conducted by Knekt et al. in 1994. This study also found an inverse relationship between higher vitamin E (any form) intake and lower CHD risk in men and women. In addition, Kushi et al. (1996) discovered an inverse relationship between vitamin E intake and CHD mortality among 34,486 postmenopausal women (RR=0.38, 95% CI: 0.18-0.8; trend: P=0.014).

For the result of RCTs, as mentioned previously, it was controversy. A meta-analysis of 6 RCTs showed no significant association between vitamin E supplementation and CVD mortality; the pooled OR (95% CI) was 1.0 (0.94-1.06) (Vivekananthan et al., 2003). Another meta-analysis of 7 RCTs also showed similar results, with the pooled ORs (95% CI) of cardiovascular events, non-fatal MI, non-fatal stroke, and CVD deaths being 0.98 (0.94-1.03), 1.00 (0.92-1.09), 1.03 (0.93-1.14), and 1.00 (0.94-1.05), respectively [66]

Notes

  1. Jump up^  "USDA Nutrient Data Laboratory". In notes 2–11, USDA NDL Release 24 numbers are given as mg/(100 g). Low and high values vary some by raw versus cooked and by variety.
  2. Jump up^  Spinach (2.0 raw, 2.1 cooked), turnip (2.9 raw, 1.9 cooked), beet (1.5 raw, 1.8 cooked), collard (2.3 raw, 0.88 cooked), and dandelion greens (3.4 raw, 2.4 cooked)
  3. Jump up^  1.1 raw, 1.5 cooked
  4. Jump up^  0.78 raw, 1.5 cooked
  5. Jump up^  1. raw, 0.8 cooked
  6. Jump up^  0.26 raw, 0.94 boiled
  7. Jump up^  0.54 raw, 0.56 cooked
  8. Jump up^  0.36 raw, 0.44 cooked
  9. Jump up^  Lettuce (0.18 iceberg, 0.22 green leaf, 0.13 romaine, 0.15 red leaf, 0.18 butterhead)

References

  1. Jump up to:a b c d e f "Vitamin E — Health Professional Fact Sheet". Office of Dietary Supplements, US National Institutes of Health. 9 May 2016. Retrieved 5 February 2015.
  2. Jump up^  Brigelius-Flohé R, Traber MG; Traber (1999). "Vitamin E: function and metabolism". FASEB J13 (10): 1145–1155. PMID 10385606.
  3. Jump up^  Traber, MG (1998). "The biological activity of vitamin E". The Linus Pauling Institute. Retrieved 6 March 2011.
  4. Jump up^  Bieri JG, Evarts RP; Evarts (1974). "γ-Tocopherol: metabolism, biological activity and significance in human vitamin E nutrition". American Journal of Clinical Nutrition27 (9): 980–986. PMID 4472121.
  5. Jump up to:a b c Brigelius-Flohé R, Traber MG; Traber (1 July 1999). "Vitamin E: function and metabolism". FASEB J13 (10): 1145–55. PMID 10385606.
  6. Jump up^  Reboul E, Richelle M, Perrot E, Desmoulins-Malezet C, Pirisi V, Borel P; Richelle; Perrot; Desmoulins-Malezet; Pirisi; Borel (15 November 2006). "Bioaccessibility of carotenoids and vitamin E from their main dietary sources". Journal of Agricultural and Food Chemistry54 (23): 8749–8755. doi:10.1021/jf061818sPMID 17090117.
  7. Jump up^  Choe, Eunok; Min, David B (October 2009). "Mechanisms of Antioxidants in the Oxidation of Foods"Comprehensive Reviews in Food Science and Food Safety8 (4): 345–358. doi:10.1111/j.1541-4337.2009.00085.x. Retrieved 4 September 2016.
  8. Jump up to:a b c d e f g National Institute of Health (4 May 2009). "Vitamin E fact sheet".
  9. Jump up to:a b Herrera E, Barbas C; Barbas (2001). "Vitamin E: action, metabolism and perspectives". Journal of Physiology and Biochemistry57 (2): 43–56. doi:10.1007/BF03179812PMID 11579997.
  10. Jump up^  Packer L, Weber SU, Rimbach G; Weber; Rimbach (2001). "Molecular aspects of α-tocotrienol antioxidant action and cell signalling"Journal of Nutrition131 (2): 369S–73S. PMID 11160563.
  11. Jump up^  Traber, M.G. "19". In Ross, A. Catherine. Modern Nutrition in Health and Disease (11 ed.). Philadelphia, PA: Lippincott Williams & Wilkins. pp. 293–294. ISBN 9781605474618.
  12. Jump up^  Traber, MG. "Chapter 15: vitamin E". In Bowman BA and Russell RM. Current Knowledge in NutritionI (9 ed.). Washington DC, USA: ILSI. ISBN 978-1-57881-199-1.
  13. Jump up^  Wefers H, Sies H; Sies (1988). "The protection of ascorbate and glutathione against microsomal lipid peroxidation is dependent on Vitamin E". European Journal of Biochemistry174 (2): 353–357. doi:10.1111/j.1432-1033.1988.tb14105.xPMID 3383850.
  14. Jump up to:a b Traber MG, Atkinson J; Atkinson (2007). "Vitamin E, Antioxidant and Nothing More"Free radical biology & medicine43 (1): 4–15. doi:10.1016/j.freeradbiomed.2007.03.024PMC 2040110Freely accessiblePMID 17561088.
  15. Jump up^  Wang X, Quinn PJ; Quinn (1999). "Vitamin E and its function in membranes". Progress in Lipid Research38 (4): 309–36. doi:10.1016/S0163-7827(99)00008-9PMID 10793887.
  16. Jump up^  Brigelius-Flohé R, Traber MG; Traber (1999). "Vit amin E: function and metabolism". FASEB J13 (10): 1145–55. PMID 10385606.
  17. Jump up^  Ahsan, H; Ahad, A; Siddiqui, W. A. (2015). "A review of characterization of tocotrienols from plant oils and foods"Journal of Chemical Biology8 (2): 45–59. doi:10.1007/s12154-014-0127-8PMC 4392014Freely accessiblePMID 25870713.
  18. Jump up^  "Vitamin E". Mayo Clinic. 2016. Retrieved 12 October 2016.
  19. Jump up^  Traber MG, Stevens JF; Stevens (2011). "Free Radical Biology and Medicine – Vitamins C and E: Beneficial effects from a mechanistic perspective"Free Radical Biology and Medicine51 (5): 1000–13. doi:10.1016/j.freeradbiomed.2011.05.017PMC 3156342Freely accessiblePMID 21664268.
  20. Jump up^  UHMWPE Biomaterials Handbook, 2nd Edition, Kurtz ed. (2009)
  21. Jump up^  Schneider C (2005). "Chemistry and biology of vitamin E". Mol Nutr Food Res49 (1): 7–30. doi:10.1002/mnfr.200400049PMID 15580660.
  22. Jump up to:a b Devaraj S, Hugou I, Jialal I; Hugou; Jialal (2001). "-Tocopherol decreases CD36 expression in human monocyte-derived macrophages". J Lipid Res42 (4): 521–527. PMID 11290823.
  23. Jump up^  Azzi A, Stocker A; Stocker (2000). "Vitamin E: non-antioxidant roles". Prog Lipid Res39 (3): 231–255. doi:10.1016/S0163-7827(00)00006-0PMID 10799717.
  24. Jump up to:a b Villacorta L, Graça-Souza AV, Ricciarelli R, Zingg JM, Azzi A; Graça-Souza; Ricciarelli; Zingg; Azzi (2003). "α-Tocopherol induces expression of connective tissue growth factor and antagonizes tumor necrosis factor-α-mediated downregulation in human smooth muscle cells". Circ. Res92 (1): 104–110. doi:10.1161/01.RES.0000049103.38175.1BPMID 12522127.
  25. Jump up^  Muller DP (2010). "Vitamin E and neurological function. Review". Mol. Nutr. Food Res54 (5): 710–718. doi:10.1002/mnfr.200900460PMID 20183831.
  26. Jump up^  Dowd P, Zheng ZB; Zheng (1995). "On the mechanism of the anticlotting action of vitamin E quinone"Proc Natl Acad Sci U S A92 (18): 8171–8175. Bibcode:1995PNAS...92.8171Ddoi:10.1073/pnas.92.18.8171PMC 41118Freely accessiblePMID 7667263.
  27. Jump up^  Brigelius-Flohé R, Davies KJ; Davies (2007). "Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a 'junk' food? Comments on the two accompanying papers: "Molecular mechanism of alpha-tocopherol action" by A. Azzi and "Vitamin E, antioxidant and nothing more" by M. Traber and J. Atkinson". Free radical biology & medicine43 (1): 2–3. doi:10.1016/j.freeradbiomed.2007.05.016PMID 17561087.
  28. Jump up^  Atkinson J, Epand RF, Epand RM; Epand; Epand (2008). "Tocopherols and tocotrienols in membranes: a critical review". Free radical biology & medicine44 (5): 739–64. doi:10.1016/j.freeradbiomed.2007.11.010PMID 18160049.
  29. Jump up to:a b Whitney, Ellie; Sharon Rady Rolfes (2011). Peggy Williams, ed. Understanding Nutrition (Twelfth ed.). California: Wadsworth, Cengage Learning. ISBN 0-538-73465-5.
  30. Jump up^  Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM; Buring; Christen; Kurth; Belanger; MacFadyen; Bubes; Manson; Glynn; Gaziano (2008). "Vitamins E and C in the Prevention of Cardiovascular Disease in Men: The Physicians' Health Study II Randomized Trial"JAMA: the Journal of the American Medical Association300 (18): 2123–33. doi:10.1001/jama.2008.600PMC 2586922Freely accessiblePMID 18997197.
  31. Jump up to:a b c d e Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academy Press, 2000.
  32. Jump up to:a b c d e Kowdley KV, Mason JB, Meydani SN, Cornwall S, Grand RJ; Mason; Meydani; Cornwall; Grand (1992). "Vitamin E deficiency and impaired cellular immunity related to intestinal fat malabsorption". Gastroenterology102 (6): 2139–42. PMID 1587435.
  33. Jump up^  Bjelakovic, G; Nikolova, D; Gluud, LL; Simonetti, RG; Gluud, C (14 March 2012). "Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases". The Cochrane database of systematic reviews (3): CD007176. doi:10.1002/14651858.CD007176.pub2PMID 22419320.
  34. Jump up^  Haber, David (2006). Health promotion and aging: practical applications for health professionals (4th ed.). New York, NY: Springer Pub. p. 280. ISBN 978-0-8261-8463-4.
  35. Jump up^  Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ; Schmitt; Mendiondo; Marcum; Kryscio (July 2011). "Vitamin E and all-cause mortality: a meta-analysis"Current aging science4 (2): 158–70. doi:10.2174/1874609811104020158PMC 4030744Freely accessiblePMID 21235492.
  36. Jump up^  Bin Q, Hu X, Cao Y, Gao F; Hu; Cao; Gao (April 2011). "The role of vitamin E (tocopherol) supplementation in the prevention of stroke. A meta-analysis of 13 randomized controlled trials". Thrombosis and haemostasis105 (4): 579–85. doi:10.1160/TH10-11-0729PMID 21264448.
  37. Jump up^  Haederle, Michael. "Vitamin E Supplements Raise Risk of Prostate Cancer"Health DiscoveryAARP. Retrieved 11 November 2011.
  38. Jump up^  Olson JH, Erie JC, Bakri SJ; Erie; Bakri (May 2011). "Nutritional supplementation and age-related macular degeneration". Seminars in ophthalmology26 (3): 131–6. doi:10.3109/08820538.2011.577131PMID 21609225.
  39. Jump up^  Rumbold, Alice; Ota, Erika; Hori, Hiroyuki; Miyazaki, Celine; Crowther, Caroline A. (2015-09-07). "Vitamin E supplementation in pregnancy". The Cochrane Database of Systematic Reviews (9): CD004069. doi:10.1002/14651858.CD004069.pub3ISSN 1469-493XPMID 26343254.
  40. Jump up^  Mathew MC, Ervin AM, Tao J, Davis RM; Ervin; Tao; Davis (2012). "Routine Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract"Cochrane Database Syst Rev6 (6): CD004567. doi:10.1002/14651858.CD004567.pub2PMC 4410744Freely accessiblePMID 22696344.
  41. Jump up^  "Vitamin E and Evening Primrose Oil for Management of Cyclical Mastaglgia: A Randomized Pilot Tudy" (PDF). Alternative Medicine Review. Retrieved September 19, 2015.
  42. Jump up^  Singh, Pankaj K.; Krishnan, Sunil (2015). "Vitamin E Analogs as Radiation Response Modifiers". Evidence-Based Complementary and Alternative Medicine2015: 1–16. doi:10.1155/2015/741301ISSN 1741-427X.
  43. Jump up^  Material Safety Data Sheet for Vitamin E, accessdate: September 22, 2015
  44. Jump up^  "Wolfram Alpha"http://www.wolframalpha.com. External link in |publisher= (help)
  45. Jump up^  Simopoulos AP, Norman HA, Gillaspy JE, Duke JA (1992). "Common purslane: a source of omega-3 fatty acids and antioxidants". J Am Coll Nutr11 (4): 374–82. doi:10.1080/07315724.1992.10718240PMID 1354675.
  46. Jump up^  "09038, Avocados, raw, California"National Nutrient Database for Standard Reference, Release 26. United States Department of Agriculture, Agricultural Research Service. Retrieved 14 August 2014.
  47. Jump up^  http://ndb.nal.usda.gov/ndb/nutrients/report/nutrientsfrm?max=25&offset=0&totCount=0&nutrient1=323&nutrient2=341&nutrient3=342&subset=1&fg=4&sort=c&measureby=g USDA List for Vitamin E in Vegetable Oils
  48. Jump up^  Institute of Medicine (2000). "Vitamin E". Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (PDF). Washington, DC: The National Academies Press. pp. 186–283.
  49. Jump up^  Tolerable Upper Intake Levels For Vitamins And Minerals (PDF), European Food Safety Authority, 2006
  50. Jump up^  Evans HM, Bishop KS; Bishop (1922). "On the existence of a hitherto unrecognized dietary factor essential for reproduction". Science56 (1458): 650–651. Bibcode:1922Sci....56..650Edoi:10.1126/science.56.1458.650JSTOR 1647181PMID 17838496.
  51. Jump up^  Oakes, Elizabeth H. (2007). "Emerson, Gladys Anderson". Encyclopedia of World Scientists. p. 211. ISBN 1438118821{{inconsistent citations}}
  52. Jump up^  Subcommittee on Vitamin Tolerance, Committee on Animal Nutrition, National Research Council (1987). "Vitamin E, in Vitamin Tolerance of Animals". National Academy of Sciences. Retrieved 22 December 2013.
  53. Jump up to:a b c Bell EF (1987). "History of vitamin E in infant nutrition". American Journal of Clinical Nutrition46 (1 Suppl): 183–186. PMID 3300257.
  54. Jump up^  Shute, W. E.; Shute, E. V.; et al., Alpha Tocopherol (Vitamin E) in Cardiovascular Disease. Toronto, Ontario, Canada: Ryerson Press, 1945
  55. Jump up^  Vogelsang A, Shute EV; Shute (June 1946). "Effect of vitamin E in coronary heart disease". Nature157 (3997): 772. Bibcode:1946Natur.157..772Vdoi:10.1038/157772b0PMID 21064771.
  56. Jump up^  Shute EV, Vogelsang AB, Skelton FB, Shute WE; Vogelsang (January 1948). "The influence of vitamin E on vascular disease". Surg Gynecol Obstet86 (1): 1–8. PMID 18920873.
  57. Jump up^  Skelton F, Shute E, Skinner HG, Waud RA; Shute; Skinner; Waud (1946). "Antipurpuric Action of A-Tocopherol (Vitamin E)". Science103 (2687): 762. doi:10.1126/science.103.2687.762-bPMID 17836459.
  58. Jump up^  György P, Rose CS; Rose (1948). "Effect of dietary factors on early mortality and hemoglobinuria in rats following administration of alloxan". Science108 (2817): 716–718. Bibcode:1948Sci...108..716Gdoi:10.1126/science.108.2817.716PMID 17752961.
  59. Jump up^  Gerloczy F (1949). "Clinical and pathological role of d, 1-alpha tocopherol in premature infants; studies on the treatment of scleroedema". Ann Paediatr173 (3): 171–86. PMID 18140084.
  60. Jump up^  Brion LP, Bell EF, Raghuveer TS; Bell; Raghuveer (2003). Brion, Luc P, ed. "Vitamin E supplementation for prevention of morbidity and mortality in preterm infants"Cochrane Database Syst Rev (4): CD003665. doi:10.1002/14651858.CD003665PMID 14583988These observations explain why even a small dose of 5 mg of dl-alpha-tocopheryl acetate provided enterally has proven to be more efficient than larger intramuscular doses (30 mg) in treating scleredema (Gerlóczy 1949)
  61. Jump up^  American Heart Association, 2015
  62. Jump up^  Maruyama, K; Iso, H (2014). Overview of the Role of Antioxidant Vitamins as Protection Against Cardiovascular Disease: Implications of Aging. Available from: Aging: Oxidative Stress and Dietary Antioxidants (1 ed.). New York: Elsevier Inc. p. Chapter 21.
  63. Jump up to:a b Simon, E; Gariepy, J; Cogny, A; Moatti, A; Simon, A (2001). "Erythrocyte, but not plasma, vitamin E concentration is associated with carotid intima–media thickening in asymptomatic men at risk for cardiovascular disease". Atherosclerosis159 (1): 193–200. doi:10.1016/s0021-9150(01)00493-2PMID 11689221.
  64. Jump up^  Asplund, K (2002). "Antioxidant vitamins in the prevention of cardiovascular disease: a systematic review". Journal of Internal Medicine251 (5): 372–392. doi:10.1046/j.1365-2796.2002.00973.xPMID 11982737.
  65. Jump up^  Rimm, E.B; Stampfer, M.J; Ascherio, A (1993). "Vitamin E consumption and the risk of coronary heart disease in men". New England Journal of Medicine328 (20): 1450–6. doi:10.1056/NEJM199305203282004PMID 8479464.
  66. Jump up^  Eidelman, R.S; Hollar, D; Hebert, P.R; Lamas, G.A; Hennekens, C.H (2004). "Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease". Archives of Internal Medicine164 (14): 1552–6. doi:10.1001/archinte.164.14.1552PMID 15277288.

Further reading

  • Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg JM, Azzi A; Kelly; Salonen; Neuzil; Zingg; Azzi (2002). "The European perspective on vitamin E: current knowledge and future research". American Journal of Clinical Nutrition76 (4): 703–16. PMID 12324281.

External links

Source: https://en.wikipedia.org/wiki/Vitamin_E

PRODIGY-5

ALL IN ONE NUTRITIONAL WITH TRANS-ARMOR® NUTRIENT TECHNOLOGY

BREAKTHROUGH TECHNOLOGY IN PRODIGY 5.

THE FIVE UNIQUE ATTRIBUTES

A revolutionary new product featuring five unique attributes that create an all-in-one nutritional experience for everyone, every day. Take advantage of the technology and know-how, and enjoy the benefits of the phytoplankton, antioxidants, vitamins, and energy you can feel in minutes with the new ForeverGreen product: Prodigy-5.

Vitamins in Prodigy-5

We all know that vitamins and minerals are essential to our overall health, yet many of us are left not getting most of the vitamins and minerals we need through our normal eating habits. Prodigy-5 features a unique blend of vitamins and minerals that were each specifically chosen using the best peer reviewed scientific research available to support your general and eye health.  

Technology & Know-how behind Prodigy-5

​Adam Saucedo, M.D., has teamed up with the brilliant mind of Balamurali Ambati, M.D., PhD, MBA to bring you the exclusive TransArmor™ Nutrient Technology, found only in Prodigy-5. The patent-pending TransArmor™ technology increases the transit time of nutrients through the digestive system and primes the body for increased absorption of these nutrients.

Antioxidants in Prodigy-5

Prodigy-5 features natural pomegranate and raspberry for a bold flavor that also delivers powerful antioxidants! Antioxidants help to rid the body of damaging free radicals. Antioxidants become a powerful defense system to these free radicals, which if left unchallenged, can contribute to the cause of a range of health problems. Raspberries and pomegranates, Marine phytoplankton, Curcuma.

Phytoplankton in Prodigy-5

The most fundamental nutrient on the planet, phytoplankton are microscopic plant-based organisms that generate most of the world’s oxygen. Phytoplankton, found naturally in both salt and fresh water, are a viable source of vitamins, minerals, amino acids, and other micronutrients.

Energy of the Prodigy-5

Prodigy-5 features natural green tea extract, which is known to help increase energy and mental focus. It helps provide the alertness associated with caffeine without the jittery side effects! Green tea has a range of health benefits, and also contains powerful antioxidants, making it the perfect way to get a little extra boost with your daily dose of Prodigy-5.

PRODIGY-5 DEVELOPED BY MEDICAL INDUSTRY LEADERS

Prodigy-5 revolutionaly Trans-Armor™ nutrient technology, developed by medical industry leader doctors aids the body in absorbing more of the nutrition than it normally would, thereby increasing efficiencies and overall health.

In addition to this scientifically proven technology, Prodigy-5 is considered an all-in-one nutritional habit.

Dr. Ambati, child prodigy, and ForeverGreen’s own Research Scientist Adam Saucedo have partnered together and developed what is being called the check-mate in the conversation of nutrition, Prodigy-5.

DR. AMBATI

CHILD PRODIGY

Dr. Ambati started calculus at age 4, graduated high school at age 11, pre-med age 13, med-school at 14 and was announced the Guinness Book of World Records holder for youngest doctor at age 17.

DR. ADAM SAUCEDO

RESEARCH SCIENTIST

Dr. Adam Saucedo is ForeverGreen’s own Research Scientist, founder and Chief Medical Adviser of the Center for the Heart and Founder of the New Life Center; the largest eating disorder clinic in the world.

DID YOU KNOW THAT HUMAN STOMACH ACIDS ARE STRONG ENOUGH TO DISSOLVE A RAZOR BLADE?

This means that your stomach acids act like a wall, preventing supplements and nutrients from passing to your blood stream and cells; only a percentage survives. Plain English? Your body gets only a fraction of the nutrients it digests. So, this begs the question, Can it be changed?

Can we use modern science to get more out of the digestive process? The answer is a very exciting yes!

Prodigy-5 with the perfect micro-nutrient formula featuring “Trans-Armor Nutrient Technology” that can quickly deliver the nutrients you need throughout your entire body and has the ability to increase the absorption and utilization of those nutrients to maximize your results. With this ground-breaking technology and formula, Prodigy-5 is the solution to the global problem of malnutrition.

With today’s nutritionally bankrupt foods, and the bodies inability to absorb 100% of even the healthiest whole foods, malnutrition effects every singe one of us. Whether you are healthy, wealthy, poor or starving, every person on this planet needs the nutritional revolution offered in Prodigy-5. It is literally for EVERYONE, EVERY DAY.

Prodigy-5 delivers a new TransArmor™ Nutrition bio-enhancing technology.
See how it works:

Prodigy-5 revolutionaly Trans-Armor™ nutrient technology, developed by medical industry leader doctors aids the body in absorbing more of the nutrition than it normally would, thereby increasing efficiencies and overall health. In addition to this scientifically proven technology, Prodigy-5 is considered an all-in-one nutritional habit.

Prodigy 5 contains the new "Trans-Armor™" delivery technology that provides nutrition and energy at the highest level of absorption to our body's cells, including:

• a micronutrient formula for general health,
• a micronutrient formula for eye health,
• an impressive antioxidant profile,
• an impressive and new bio-enhancing absorption technology


Does not contain artificial sweetners or additives. Sweetened with Pomegranate, Raspberry, and Stevia.

PRODIGY-5 HIGHLIGHT

PHYTOPLANKTON

One of those rare products that contains almost everything you need for life (and the rebuilding of cells) is marine phytoplankton.

Marine phytoplankton are one-cell plants that are too small to be seen individually without the aid of a microscope. Because they are microscopic, the body’s cells can absorb them immediately (bioavailability) and receive all of their valuable nutrients at the same time for maximum effectiveness.

The marine phytoplankton, also known as a “Superfood”, is according to NASA and plenty of scientific researches the most important plant and food in the world as it provides the earth with over 90% of it’s oxygen. Marine phytoplankton is not only an important source of oxygen it is a critical food source for ocean life and apparently, for us too.

There are very few (foods) that provide all, or even most, of the raw materials to make new cells and sustain the existing ones. A complete super food, these amazing plants contain more than 90 nutrients vital for a healthy body.

It contains all nine amino acids that the body cannot make. The essential fatty acids are also present (Omega-3 and Omega-6). Further it contains the most important vitamins and mineral nutrients. For example vitamin C, H, B1, B2, B3, B6, B12, E, selenium, zinc, chromium, magnesium, calcium, nickel, iron and many more. (General informations about vitamins)

These valuable nutrients are essential for the production of healthy new cells. We all have, at one time or another, cellular or energy blockages, whether they be emotional or physical. And, among the functional ingredients identified from marine algae, natural pigments (NPs) have received particular attention.

Some benefits (but not all) of marine phytoplankton include:

Support Cardiovascular Health: The high level of antioxidants, amino acids, and high levels of omega-3 fatty acids are known to support a healthier cardiovascular system.

Promotes Healthy Skin: There are large amounts of bioflavonoids that can remove toxins from skin cells. Marine phytoplankton also contains riboflavin that reduces free radical attacks in skin cells.

Boost the Immune System: Alanine, beta-carotene, bioflavonoids, and vitamin E are all immune system enhancers found in this superfood.

Increase Energy: Marine phytoplankton detoxifies the body, and eliminates toxins from the cells. This will improve your energy and mood levels.

Stabilizes Blood Sugar Levels: Marine phytoplankton is really good for stabilizing blood sugar levels. Chromium helps to prevent and moderate against diabetes. Glutamic acids help to reduce alcohol and sugar cravings. Phenylalanine is a known sugar craving reducer.

Helps with Joint Health: Manganese helps to assist in joint mobility. Omega-6 fatty acids can relieve symptoms of arthritis. Pathogenic acid can reduce morning pain caused by arthritis. It will help a lot with joint mobility, and reducing pain and stiffness.

Liver Support: The arginine is found in this superfood and is known to help detoxify the liver.

Improves Brain Function: The high amount of omega-3 fatty acids improve brain function. The nucleic acids can enhance the memory. Phenylalanine improves mental clarity. Proline increases learning ability. Magnesium helps reduce mood swings.

More information about phytoplankton

PRODIGY-5 HIGHLIGHT

VITAMINS AND MINERALS

MICRONUTRIENT FORMULA FOR GENERAL HEALTH

Vitamin A • Vitamin C • Vitamin D • Vitamin E • Vitamin K • Vitamin B6 • Vitamin B12 • Folate • B1 (Thiamin) • B2 (Riboflavin) • B3 (Niacin)



MICRONUTRIENT FORMULA FOR EYE HEALTH

Lutein • Zeaxanthin • Copper • Zinc

Vitamins have specific role to play in the natural wear and tear of the body. There are many vitamin benefits that have a major impact on our overall health.
Vitamins are divided into two types: fat soluble and water soluble. Fat soluble vitamins (vitamin A, D, E and K) are stored in the fat tissues and liver. They can remain in the body up to six months. When the body requires these, they are transported to the area of requirement within the body with help of special carriers. Water soluble vitamins (B-vitamins and vitamin C) are not stored in the body like the fat soluble ones. They travel in the blood stream and need to be replenished everyday.


Below is a list of the 13 major vitamins and what each does for your body:

Prodigy-5 contains: Vitamin A (Beta-Carotene) is a natural antioxidant. It belongs to a class of pigments known as carotenoids which include the yellow, red and orange pigments that give many vegetables and plants their coloring. Vitamin A has been found to enhance immune system functions by supporting and promoting the activities of white blood cells as well as other immune related cells. It also helps to inhibit free radicals and their damaging effects which have been associated with arthritis, heart disease and the development and progression of malignant cells (cancer). Beta-carotene is a precursor for vitamin A (approximately 6 mg of ß-carotene = 1 mg vitamin A). Beta-carotene is best known for the body’s ability to convert it into retinal, which is essential for good vision and visual health, skin, and immune functions.
Natural sources of beta-carotene include carrots, pumpkin, sweet potato, spinach, kale, collard and turnip greens, and winter squash.

According to the National Institutes on Health, the average adult male should be getting 900mcg of vitamin C each day. Females should be getting 700mg a day. Individuals with special needs (women who are pregnant, smokers) may have different requirements and should consult their health professional.

Prodigy-5 contains: Vitamin B1 (Thiamin) is a water-soluble B-vitamin involved with many cellular functions including carbohydrates metabolism, break down of amino acids, production of certain neurotransmitters and multiple enzyme processes (through the coenzyme thiamin pyrophosphate, or TPP). Thiamin can be found in small amounts in a wide variety of foods. Pork, sunflower seeds, yeast, peas and wheat are a few examples. Very little thiamin is stored within the body and must be consumed on a regular basis. A deficiency may result in weakness, loss of appetite, nerve degeneration and irritability.

Prodigy-5 contains: Vitamin B2 (Riboflavin), like most B-vitamins, is involved in many cellular functions. Riboflavin is important in energy metabolism, folate synthesis, conversion of tryptophan to niacin and acts as important coenzymes (FAD/FMN) involved in many reactions. It can be found in liver, mushrooms, spinach, milk, eggs and grains. Because it is water-soluble, there is minimal storage of riboflavin within the body and when dietary intake is insufficient, deficiency can occur (usually accompanied with other vitamin deficiencies).

Prodigy-5 contains:Vitamin B3 (Niacin), also referred to as nicotinamide and nicotinic acid, is another water-soluble, B-vitamin involved with energy metabolism. The coenzymes of niacin (NAD/NADH/NADP/NADPH) are necessary for ATP synthesis (the body’s main energy source), synthesis of fatty acids and some hormones and the transport of hydrogen atoms. When niacin levels are low, the body can use L-tryptophan (an essential amino acid) to manufacture the vitamin. This process is not ideal, however, as it can rapidly deplete L-tryptophan in the body and take away from its other needs such as maintaining optimal levels of serotonin and melatonin. Niacin can be found in grains, liver, fish and chicken.

Prodigy-5 contains: Vitamin B6 is a water-soluble vitamin which plays a variety of important roles in numerous biological processes. Humans cannot produce vitamin B6 so it must be obtained from the diet. Adequate sources of B6 include meats (salmon, turkey, chicken) and whole grain products, such as spinach, nuts and bananas. There are three forms of vitamin B6: pyridoxal (PL), pyridoxine (PN) and pyridoxamine (PM). Pyridoxal-5′-phosphate (PLP) is the principal coenzyme form and has the most importance in human metabolism. It acts as a cofactor for many enzymatic reactions involving L-tryptophan, including L-tryptophan’s conversion to serotonin, an important neurotransmitter in the brain. Pyridoxal-5′-phosphate is also involved in other enzymatic reactions where other neurotransmitters, such as gamma-aminobutyric acid (GABA), are synthesized. This plays a critical role in the functions of the nervous system.
Regarding cardiovascular health, there is an association between low vitamin B6 intake with increased blood homocysteine levels and increased risk of cardiovascular diseases, which has been documented in several large observational studies. Vitamin B6, along with folic acid, vitamin B5, vitamin B12 and niacin, is involved in cell metabolism, enhances the immune system, supports the functions of the nervous system, aids in carbohydrate metabolism to produce energy and promotes cognitive health. Vitamin B6 is necessary for the conduction of nerve impulses, regulation of steroid hormones, catabolism of glycogen to glucose, heme synthesis, and the synthesis/ metabolism of amino acids and neurotransmitters.

Prodigy-5 contains: Vitamin B12 is a water-soluble vitamin essential for numerous processes in the body. The richest food sources of vitamin B12 include animal products such as meat, poultry and fish. It is not generally present in plant products with the exeption of peanuts and soybeans which absorb vitamin B12 from bacteria-filled nodules growing on the roots of these plants. Cyanocobalamin is the form most commonly used in supplements but it must be converted into methylcoblamin before it can join the metabolic pool and be properly utilized by the body. Vitamin B12 is also available as methylcobalamin, which is the methylated form, allowing it to become active quicker and be more effective. Vitamin B12 is necessary for countless processes within the body; it transfers methyl groups, plays a part in DNA synthesis and regulation, helps facilitate cell synthesis, maturation and division, helps convert homocysteine to methionine playing a role in cardiovascular protection, aids in the proper functioning of the nervous system, participates in the metabolism of carbohydrates, proteins and fats, helps produce SAMe for mood and cognitive health and also helps produce energy.

Prodigy-5 contains: Vitamin C (Ascorbic acid) is a water-soluble antioxidant essential for human health and life. It has been proven necessary for healthy immune responses, wound healing, non-heme iron absorption (coming from grains and vegetables), reduction in allergic responses, development of connective tissue components such as collagen, and for the prevention of diseases. Vitamin C has also been shown to be important for cardiovascular health, reducing free radicalproduction and free radical damage, and good cognitive health and performance.
Due to human’s inability to produce vitamin C, it is essential to ingest sources containing vitamin C on a regular, if not daily basis. Natural sources of vitamin C include oranges, guavas, peppers (green, red, yellow), kiwis, strawberries, cantaloupes, Brussels sprouts, broccoli, and many other fruits and vegetables.

Prodigy-5 contains: Vitamin D is a fat-soluble vitamin essential for normal growth and development, the formation and maintenance of healthy bones and teeth, and influences the absorption and metabolism of phosphorus and calcium. It is necessary for proper muscle functioning, bone mineralization and stability, and multiple immune functions. Primarily the vitamin D used by the body is produced in the skin after exposure to ultraviolet light from sunlight. Lack of exposure to sunlight, reduced ability to synthesize vitamin D in the skin, age, low dietary intake, or impaired intestinal vitamin D absorption can result in deficiency. Deficiency has been associated with rickets (poor bone formation), porous or weak bones (osteopenia, osteoporosis), pain and muscle weakness, increased risk for cardiovascular disease, impaired cognitive health, and the development and progression of malignant cells (cancer).
Natural food sources of vitamin D are few; these foods are eggs from hens that have been fed vitamin D or fatty fish such as herrings, mackerel, sardines and tuna. Due to low vitamin D levels, countries such as the United States and Canada have opted to fortify foods such as milk and other dairy products, margarines and butters, some natural cereal and grain products.
According to the National Institutes on Health, the average adult should be getting 600IU of vitamin D each day. Individuals with special needs (the elderly, women who are pregnant) may have different requirements and should consult their health professional.

Prodigy-5 contains: Vitamin E is one of the most powerful fat-soluble antioxidants in the body. It has been proven to help promote cardiovascular health, enhanced immune system function, aid in skin repair and to protect cell membranes from damage caused by free radicals. Vitamin E contributes to proper blood flow and clotting as well as cognitive health and function.
Natural sources of vitamin E include herbs such as cloves and oregano, whole grains, nuts and seeds, wheat germ, avocado, egg yolks, and vegetables/fruits such as dark leafy greens, peppers (red, yellow, orange, green), tomatoes, and mangos. Other sources are vegetable oils, margarines, and fortified cereals.

Prodigy-5 contains: Folic Acid is water-soluble vitamin important for many aspects of health. Sources of folic acid include dark, green leafy vegetables such as spinach or asparagus, fortified cereals, orange juice and legumes. Folic acid (folate) must go through a series of chemical conversions before it becomes metabolically active to be properly utilized within the body.
Folinic acid is the highly bioavailable, metabolically active derivative of folic acid and does not require the action of the enzyme dihydrofolinate reductase to become active, so it’s not affected by medicines and herbs that inhibit this enzyme. Adequate folate is necessary for proper DNA and RNA synthesis in regards to fetal growth and development. Due to these effects, the U.S. Public Health Service recommends all women capable of becoming pregnant consume 400 mcg of folic acid daily to prevent neural tube defects.
In addition to its clear effects on fetal growth and development, folic acid also plays an important role in cardiovascular health. By aiding in the conversion of homocysteine to methionine, it has been shown to reduce the levels of homocysteine, a sulfur containing amino acid. In the absence of adequate folic acid levels, homocysteine levels increase and high homocysteine levels are associated with atherosclerosis and the reduced circulation of oxygen and nutrients to the heart, ears and other organs. These results have been documented in countless studies. Folic acid, along with vitamin B6, vitamin B5, vitamin B12 and niacin, is involved in cell metabolism, enhances the immune system, supports the functions of the nervous system, aids in carbohydrate metabolism to produce energy and promotes cognitive health.

Prodigy-5 contains: Vitamin K, a generic term for a group of fat soluble vitamins, are involved mostly in the process of blood clotting, but also needed in metabolic pathways of bones and other tissues. The most well known are vitamin K1, also known as phylloquinone, and vitamin K2, known as menaquinone. Vitamin D and vitamin K work together in bone metabolism and development. Vitamin K works against oral anticoagulants such as 4-hidroxikumarin, and excessive vitamin K intake, either through supplementation or a change in diet, can reduce the anticoagulant effect. Vitamin K1 is mainly found in leafy green vegetables (such as spinach, swiss chard and kale), avocado and kiwi fruit; vitamin K2 can be found in meat, eggs, and dairy and is also synthesized by bacteria in the colon.

More information about vitamins

PRODIGY-5 HIGHLIGHT

ANTIOXIDANTS


WHAT ARE OXIDANTS?

Oxidants are free radicals that either our bodies produce or we get from the environment. Our bodies create oxidants as a response to stress or poor diet, or we are exposed to oxidants through environmental factors like pollution. Oxidative damage is a contributing factor to many diseases, including muscle and tissue degeneration, heart disease, diabetes, cancer, and many other health problems.


WHAT ARE FREE RADICALS?

Free radicals are atoms or groups of atoms with an odd (unpaired) number of electrons. They are like bullies that are low in energy and attack healthy cells and steal their energy to satisfy themselves. Free radicals cause damage to our blood vessels, which can lead to deposits of bad cholesterol and block arteries. Free radicals come in many shapes, sizes, and chemical configurations. What they all share is a voracious appetite for electrons, stealing them from any nearby substances that will yield them.

The human body naturally produces free radicals and the antioxidants to counteract their damaging effects. However, in most cases, free radicals far outnumber the naturally occurring antioxidants. In order to maintain the balance, a continuous supplemental source of external antioxidants are necessary in order to obtain the maximum benefits of antioxidants.


WHAT ARE ANTIOXIDANTS AND WHY DO WE NEED THEM?

Antioxidants are the nutrients’ police force! They are free radical scavengers! They get rid of the bullies! Antioxidants are like a million microscopic special ops on a mission to save your body from the inside out. The benefits of antioxidants are very important to good health, because if free radicals are left unchallenged, they can cause a wide range of illnesses and chronic diseases.

WHERE CAN WE FIND ANTIOXIDANTS?

Obtained through our foods and produced by are bodies, antioxidants are a powerful defense system.
Antioxidants can be found in flavonols (found in chocolate), resveratrol (found in wine), Ellagic acid (found in Raspberries and pomegranate), and lycopene (found in tomatoes). Other popular antioxidants include vitamins A (beta-carotene), C, E, and catechins.

GREAT SOURCES OF ANTIOXIDANTS IN PRODIGY-5

Marine phytoplankton, Raspberries, Pomegranates, Curcuma

Raspberries and pomegranates contain one of the most powerful antioxidants known, Ellagic acid. Ellagic acid is a potent natural antioxidant that can be found in raspberries and pomegranates. Ellagic acid has been shown to be an effective anti- mutagen and anti-carcinogen.

Anthocyanins (red flavonoid pigment found in plants) give pomegranates their red color and offer a strong serving of antioxidants. Punicalagins (a type of phenolic compound) specifically support cardiovascular and neurological health. Studies have shown that antioxidants 18. can play a role in reducing the cell damage of free radicals.

ANTIOXIDANTS AND AGING

Antioxidants are powerful molecules that support healthy aging in more ways than one. These potent compounds aid in an overall healthy lifestyle by supporting cellular health. Aging isn’t about your chronological age; it is more about the amount of stress in your life and the the function of your cells!

More information about antioxidants

ORDER PRODIGY-5

 
 
buy prodigy5
buy prodigy5
 

Becoming a member gives you the advantage of shopping on discounted member prices next time you purchase. Moreover ForeverGreen brings the power of the global economy to every doorstep. By offering unique, effective and high-impact products that fit in an envelope, ForeverGreen allows anyone, anywhere to build a successful global business. Whether you’re interested in a little extra income or building a long-term viable business, you’re in the right place with ForeverGreen.

 

PRODIGY 5 PRICES


PRODIGY-5 Single Case
(One case contains 28 serving) prices
$ 75.95
€ 69.11
Prodigy 5 Single DEF small

PRODIGY-5 Double Case 
(One case contains 28 serving) prices
$ 149.95
€ 136.45
Prodigy 5 Double DEF small

You will be redirected to ForeverGreen's official webshop.
Select your country and you'll find Prodigy-5 in the left column, in the strips products group.

ForeverGreen are shipping worldwide.