From Wikipedia, the free encyclopedia

 
 
Diatoms are one of the most common types of phytoplankton.

Phytoplankton /ˌftˈplæŋktən/ are the autotrophic (self-feeding) components of the plankton community and a key part of oceans, seas and freshwater basin ecosystems. The name comes from the Greek words φυτόν (phyton), meaning "plant", and πλαγκτός (planktos), meaning "wanderer" or "drifter".[1] Most phytoplankton are too small to be individually seen with the unaided eye. However, when present in high enough numbers, some varieties may be noticeable as colored patches on the water surface due to the presence of chlorophyll within their cells and accessory pigments (such as phycobiliproteins or xanthophylls) in some species.

 

 

Ecology

When two currents collide (here the Oyashio and Kuroshio currents) they create eddies. Phytoplankton concentrates along the boundaries of the eddies, tracing the motion of the water.

Phytoplankton are photosynthesizing microscopic organisms that inhabit the upper sunlit layer of almost all oceans and bodies of fresh water on Earth. They are agents for "primary production," the creation of organic compounds from carbon dioxide dissolved in the water, a process that sustains the aquatic food web.[2] Phytoplankton obtain energy through the process of photosynthesis and must therefore live in the well-lit surface layer (termed the euphotic zone) of an ocean, sea, lake, or other body of water. Phytoplankton account for half of all photosynthetic activity on Earth.[3][4] Their cumulative energy fixation in carbon compounds (primary production) is the basis for the vast majority of oceanic and also many freshwater food webs (chemosynthesis is a notable exception). The effects of anthropogenic warming on the global population of phytoplankton is an area of active research. Changes in the vertical stratification of the water column, the rate of temperature-dependent biological reactions, and the atmospheric supply of nutrients are expected to have important effects on future phytoplankton productivity.[5][6] Additionally, changes in the mortality of phytoplankton due to rates of zooplankton grazing may be significant. As a side note, one of the more remarkable food chains in the ocean – remarkable because of the small number of links – is that of phytoplankton-feeding krill (a crustacean similar to a tiny shrimp) feeding baleen whales.

Phytoplankton are also crucially dependent on minerals. These are primarily macronutrients such as nitrate, phosphate or silicic acid, whose availability is governed by the balance between the so-called biological pump and upwelling of deep, nutrient-rich waters. However, across large regions of the World Ocean such as the Southern Ocean, phytoplankton are also limited by the lack of the micronutrient iron. This has led to some scientists advocating iron fertilization as a means to counteract the accumulation of human-produced carbon dioxide (CO2) in the atmosphere.[7] Large-scale experiments have added iron (usually as salts such as iron sulphate) to the oceans to promote phytoplankton growth and draw atmospheric CO2 into the ocean. However, controversy about manipulating the ecosystem and the efficiency of iron fertilization has slowed such experiments.[8]

Phytoplankton depend on other substances to survive as well. In particular, Vitamin B is crucial. Areas in the ocean have been identified as having a major lack of Vitamin B, and correspondingly, phytoplankton.[9]

While almost all phytoplankton species are obligate photoautotrophs, there are some that are mixotrophic and other, non-pigmented species that are actually heterotrophic (the latter are often viewed as zooplankton). Of these, the best known are dinoflagellate genera such as Noctiluca and Dinophysis, that obtain organic carbon by ingesting other organisms or detrital material.

The term phytoplankton encompasses all photoautotrophic microorganisms in aquatic food webs. Phytoplankton serve as the base of the aquatic food web, providing an essential ecological function for all aquatic life. However, unlike terrestrial communities, where most autotrophs are plants, phytoplankton are a diverse group, incorporating protistan eukaryotes and both eubacterial and archaebacterial prokaryotes. There are about 5,000 known species of marine phytoplankton.[10] How such diversity evolved despite scarce resources (restricting niche differentiation) is unclear.[11]

In terms of numbers, the most important groups of phytoplankton include the diatoms, cyanobacteria and dinoflagellates, although many other groups of algae are represented. One group, the coccolithophorids, is responsible (in part) for the release of significant amounts of dimethyl sulfide (DMS) into the atmosphere. DMS is oxidized to form sulfate which, in areas where ambient aerosol particle concentrations are low, can contribute to the population of cloud condensation nuclei, mostly leading to increased cloud cover and cloud albedo according to the so-called CLAW Hypothesis.[12][13] Different types of phytoplankton fill different trophic levels within varying ecosystems. In oligotrophic oceanic regions such as the Sargasso Sea or the South Pacific Gyre, phytoplankton is dominated by the small sized cells, called picoplankton and nanoplankton (also referred to as picoflagellates and nanoflagellates), mostly composed of cyanobacteria (Prochlorococcus, Synechococcus) and picoeucaryotes such as Micromonas. Within more productive ecosystems, dominated by upwelling or high terrestrial inputs, larger dinoflagellates are the more dominant phytoplankton and reflect a larger portion of the biomass.[14]

Oxygen production

Phytoplankton absorb energy from the Sun and nutrients from the water to produce their own food. In the process of photosynthesis, phytoplankton release molecular oxygen (O
2) into the water. It is estimated that between 50% and 85% of the world's oxygen is produced via phytoplankton photosynthesis.[15][16] The rest is produced via photosynthesis on land by plants.[16] Furthermore, phytoplankton photosynthesis has controlled the atmospheric CO
2/O
2 balance since the early Precambrian Eon.[17] (See Biological pump.)

Growth strategy

In the early twentieth century, Alfred C. Redfield found the similarity of the phytoplankton’s elemental composition to the major dissolved nutrients in the deep ocean.[18] Redfield proposed that the ratio of nitrogen to phosphorus (16:1) in the ocean was controlled by the phytoplankton’s requirements which subsequently release nitrogen and phosphorus as they are remineralized. This so-called “Redfield ratio” in describing stoichiometry of phytoplankton and seawater has become a fundamental principle to understand the marine ecology, biogeochemistry and phytoplankton evolution.[19] However, Redfield ratio is not a universal value and it may diverge due to the changes in exogenous nutrient delivery[20] and microbial metabolisms in the ocean, such as nitrogen fixation, denitrification and anammox.

The dynamic stoichiometry shown in unicellular algae reflects their capability to stockpile nutrients in internal pool, shift between enzymes with various nutrient requirements and alter osmolyte composition.[21][22] Different cellular components have their own unique stoichiometry characteristics,[19] for instance, resource (light or nutrients) acquisition machinery such as proteins and chlorophyll contain high concentration of nitrogen but low in phosphorus. Meanwhile, growth machinery such as ribosomal RNA contains high nitrogen and phosphorus concentration.

Based on allocation of resources, phytoplankton is classified into three different growth strategies, namely survivalist, bloomer[23] and generalist. Survivalist phytoplankton has high ratio of N:P (>30) and contains numerous resource-acquisition machinery to sustain growth under scarce resources. Bloomer phytoplankton has low N:P ratio (<10), contains high proportion of growth machinery and adapted to exponential growth. Generalist phytoplankton has similar N:P to Redfield ratio and contain relatively equal resource-acquisition and growth machinery.

Environmental controversy

A 2010 study published in Nature reported that marine phytoplankton had declined substantially in the world's oceans over the past century. Phytoplankton concentrations in surface waters were estimated to have decreased by about 40% since 1950, at a rate of around 1% per year, possibly in response to ocean warming.[24][25] The study generated debate among scientists and led to several communications and criticisms, also published in Nature.[26][27][27][28] In a 2014 follow-up study, the authors used a larger database of measurements and revised their analysis methods to account for several of the published criticisms, but ultimately reached similar conclusions to the original Nature study.[29] These studies and the need to understand the phytoplankon in the ocean led to the creation of the Secchi Disk Citizen Science study in 2013.[30] The Secchi Disk study is a global study of phytoplankton conducted by seafarers (sailors, anglers, divers) involving a Secchi Disk and a smartphone app.

Estimates of oceanic phytoplankton change are highly variable. One global ocean primary productivity study found a net increase in phytoplankton, as judged from measured chlorophyll, when comparing observations in 1998–2002 to those conducted during a prior mission in 1979–1986.[31] However, using the same database of measurements, other studies concluded that both chlorophyll and primary production had declined over this same time interval.[32][33] The airborne fraction of CO2 from human emissions, the percentage neither sequestered by photosynthetic life on land and sea nor absorbed in the oceans abiotically, has been almost constant over the past century, and that suggests a moderate upper limit on how much a component of the carbon cycle as large as phytoplankton have declined.[34] In the northeast Atlantic, where a relatively long chlorophyll data series is available, and the site of the Continuous Plankton Recorder (CPR) survey, a net increase was found from 1948 to 2002.[35] During 1998–2005, global ocean net primary productivity rose in 1998, followed by a decline during the rest of that period, yielding a small net increase.[36] Using six climate model simulations, a large multi-university study of ocean ecosystems predicted that "a global increase in primary production of 0.7% at the low end to 8.1% at the high end," by 2050 although with "very large regional differences" including "a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere."[37] A more recent multi-model study estimated that primary production would decline by 2-20% by 2100 A.D.[6] Despite substantial variation in both the magnitude and spatial pattern of change, the majority of published studies predict that phytoplankton biomass and/or primary production will decline over the next century.[5][38][39][40][41][42][43][44][45]

Researchers at the Woods Hole Oceanographic Institution have found phytoplankton to be a major source of methanol (CH
3OH) in the ocean in quantities that could rival or exceed that which is produced on land.[46][47]

Aquaculture

Main article: Algaculture

Phytoplankton are a key food item in both aquaculture and mariculture. Both utilize phytoplankton as food for the animals being farmed. In mariculture, the phytoplankton is naturally occurring and is introduced into enclosures with the normal circulation of seawater. In aquaculture, phytoplankton must be obtained and introduced directly. The plankton can either be collected from a body of water or cultured, though the former method is seldom used. Phytoplankton is used as a foodstock for the production of rotifers,[48] which are in turn used to feed other organisms. Phytoplankton is also used to feed many varieties of aquacultured molluscs, including pearl oysters and giant clams.

The production of phytoplankton under artificial conditions is itself a form of aquaculture. Phytoplankton is cultured for a variety of purposes, including foodstock for other aquacultured organisms,[48] a nutritional supplement for captive invertebrates in aquaria. Culture sizes range from small-scale laboratory cultures of less than 1L to several tens of thousands of liters for commercial aquaculture.[48] Regardless of the size of the culture, certain conditions must be provided for efficient growth of plankton. The majority of cultured plankton is marine, and seawater of a specific gravity of 1.010 to 1.026 may be used as a culture medium. This water must be sterilized, usually by either high temperatures in an autoclave or by exposure to ultraviolet radiation, to prevent biological contamination of the culture. Various fertilizers are added to the culture medium to facilitate the growth of plankton. A culture must be aerated or agitated in some way to keep plankton suspended, as well as to provide dissolved carbon dioxide for photosynthesis. In addition to constant aeration, most cultures are manually mixed or stirred on a regular basis. Light must be provided for the growth of phytoplankton. The colour temperature of illumination should be approximately 6,500 K, but values from 4,000 K to upwards of 20,000 K have been used successfully. The duration of light exposure should be approximately 16 hours daily; this is the most efficient artificial day length.[48]

 

See also

Wikimedia Commons has media related to Phytoplankton.
Wikimedia Commons has media related to Algal blooms.

References

  1. ^ Thurman, H. V. (2007). Introductory Oceanography. Academic Internet Publishers. ISBN 978-1-4288-3314-2.[page needed]
  2. ^ Ghosal; Rogers; Wray, S.; M.; A. "The Effects of Turbulence on Phytoplankton". Aerospace Technology Enterprise. NTRS. Retrieved 16 June 2011. CS1 maint: Multiple names: authors list (link)
  3. ^ "NASA Satellite Detects Red Glow to Map Global Ocean Plant Health" NASA, 28 May 2009.
  4. ^ "Satellite Sees Ocean Plants Increase, Coasts Greening". NASA. 2 March 2005. Retrieved 9 June 2014.
  5. ^ a b Henson, S. A.; Sarmiento, J. L.; Dunne, J. P.; Bopp, L.; Lima, I.; Doney, S. C.; John, J.; Beaulieu, C. (2010). "Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity". Biogeosciences. 7 (2): 621–40. doi:10.5194/bg-7-621-2010.
  6. ^ a b Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; Schneider, B.; Segschneider, J. (2010). "Projected 21st century decrease in marine productivity: a multi-model analysis". Biogeosciences. 7 (3): 979–1005. doi:10.5194/bg-7-979-2010.
  7. ^ Richtel, M. (1 May 2007). "Recruiting Plankton to Fight Global Warming". New York Times.
  8. ^ Monastersky, Richard (1995). "Iron versus the Greenhouse: Oceanographers Cautiously Explore a Global Warming Therapy". Science News. 148 (14): 220–1. doi:10.2307/4018225.
  9. ^ Wall, Tim. "Vitamin Deserts Limit Marine Life". Discovery News.
  10. ^ Hallegraeff, G.M. (2003). "Harmful algal blooms: a global overview". In Hallegraeff, Gustaaf M.; Anderson, Donald Mark; Cembella, Allan D.; Enevoldsen, Henrik O. Manual on Harmful Marine Microalgae (PDF). Unesco. pp. 25–49. ISBN 978-92-3-103871-6.
  11. ^ Hutchinson, G. E. (1961). "The Paradox of the Plankton". The American Naturalist. 95 (882): 137–45. doi:10.1086/282171.
  12. ^ Charlson, Robert J.; Lovelock, James E.; Andreae, Meinrat O.; Warren, Stephen G. (1987). "Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate". Nature. 326 (6114): 655–61. Bibcode:1987Natur.326..655C. doi:10.1038/326655a0.
  13. ^ Quinn, P. K.; Bates, T. S. (2011). "The case against climate regulation via oceanic phytoplankton sulphur emissions". Nature. 480 (7375): 51–6. doi:10.1038/nature10580. PMID 22129724.
  14. ^ Calbet, A. (2008). "The trophic roles of microzooplankton in marine systems". ICES Journal of Marine Science. 65 (3): 325–31. doi:10.1093/icesjms/fsn013.
  15. ^ "How much do oceans add to world's oxygen?". Earth & Sky. June 8, 2015. Retrieved 2016-04-04.
  16. ^ a b Roach, John (June 7, 2004). "Source of Half Earth's Oxygen Gets Little Credit". National Geographic News. Retrieved 2016-04-04.
  17. ^ Tappan, Helen (April 1968). "Primary production, isotopes, extinctions and the atmosphere". Palaeogeography, Palaeoclimatology, Palaeoecology. 4 (3): 187–210. doi:10.1016/0031-0182(68)90047-3. Retrieved 2016-04-04.
  18. ^ Redfield, Alfred C. (1934). "On the Proportions of Organic Derivatives in Sea Water and their Relation to the Composition of Plankton". In Johnstone, James; Daniel, Richard Jellicoe. James Johnstone Memorial Volume. Liverpool: University Press of Liverpool. pp. 176–92. OCLC 13993674.
  19. ^ a b Arrigo, Kevin R. (2005). "Marine microorganisms and global nutrient cycles". Nature. 437 (7057): 349–55. doi:10.1038/nature04159. PMID 16163345.
  20. ^ Fanning, Kent A. (1989). "Influence of atmospheric pollution on nutrient limitation in the ocean". Nature. 339 (6224): 460–63. Bibcode:1989Natur.339..460F. doi:10.1038/339460a0.
  21. ^ Sterner, Robert Warner; Elser, James J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press. ISBN 978-0-691-07491-7.[page needed]
  22. ^ Klausmeier, Christopher A.; Litchman, Elena; Levin, Simon A. (2004). "Phytoplankton growth and stoichiometry under multiple nutrient limitation". Limnology and Oceanography. 49 (4 Part 2): 1463–70. doi:10.4319/lo.2004.49.4_part_2.1463.
  23. ^ Klausmeier, Christopher A.; Litchman, Elena; Daufresne, Tanguy; Levin, Simon A. (2004). "Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton". Nature. 429 (6988): 171–4. Bibcode:2004Natur.429..171K. doi:10.1038/nature02454. PMID 15141209.
  24. ^ Boyce, Daniel G.; Lewis, Marlon R.; Worm, Boris (2010). "Global phytoplankton decline over the past century". Nature. 466 (7306): 591–6. doi:10.1038/nature09268. PMID 20671703.
  25. ^ Schiermeier, Quirin (2010). "Ocean greenery under warming stress". Nature. doi:10.1038/news.2010.379.
  26. ^ Mackas, David L. (2011). "Does blending of chlorophyll data bias temporal trend?". Nature. 472 (7342): E4–5; discussion E8–9. doi:10.1038/nature09951. PMID 21490623.
  27. ^ a b Rykaczewski, Ryan R.; Dunne, John P. (2011). "A measured look at ocean chlorophyll trends". Nature. 472 (7342): E5–6; discussion E8–9. doi:10.1038/nature09952. PMID 21490624.
  28. ^ McQuatters-Gollop, Abigail; Reid, Philip C.; Edwards, Martin; Burkill, Peter H.; Castellani, Claudia; Batten, Sonia; Gieskes, Winfried; Beare, Doug; Bidigare, Robert R.; Head, Erica; Johnson, Rod; Kahru, Mati; Koslow, J. Anthony; Pena, Angelica (2011). "Is there a decline in marine phytoplankton?". Nature. 472 (7342): E6–7; discussion E8–9. doi:10.1038/nature09950. PMID 21490625.
  29. ^ Boyce, Daniel G.; Dowd, Michael; Lewis, Marlon R.; Worm, Boris (2014). "Estimating global chlorophyll changes over the past century". Progress in Oceanography. 122: 163–73. doi:10.1016/j.pocean.2014.01.004.
  30. ^ "Secchi Disk Study".
  31. ^ Antoine, David (2005). "Bridging ocean color observations of the 1980s and 2000s in search of long-term trends". Journal of Geophysical Research. 110 (C6). Bibcode:2005JGRC..110.6009A. doi:10.1029/2004JC002620.
  32. ^ Gregg, Watson W.; Conkright, Margarita E.; Ginoux, Paul; O'Reilly, John E.; Casey, Nancy W. (2003). "Ocean primary production and climate: Global decadal changes". Geophysical Research Letters. 30 (15). Bibcode:2003GeoRL..30.1809G. doi:10.1029/2003GL016889.
  33. ^ Gregg, Watson W.; Conkright, Margarita E. (2002). "Decadal changes in global ocean chlorophyll". Geophysical Research Letters. 29 (15): 20–1–20–4. Bibcode:2002GeoRL..29.1730G. doi:10.1029/2002GL014689.
  34. ^ Knorr, Wolfgang (2009). "Is the airborne fraction of anthropogenic CO2emissions increasing?". Geophysical Research Letters. 36 (21). Bibcode:2009GeoRL..3621710K. doi:10.1029/2009GL040613.
  35. ^ Raitsos, Dionysios E. (2005). "Extending the SeaWiFS chlorophyll data set back 50 years in the northeast Atlantic". Geophysical Research Letters. 32 (6). Bibcode:2005GeoRL..32.6603R. doi:10.1029/2005GL022484.
  36. ^ Behrenfeld, Michael J.; O’Malley, Robert T.; Siegel, David A.; McClain, Charles R.; Sarmiento, Jorge L.; Feldman, Gene C.; Milligan, Allen J.; Falkowski, Paul G.; Letelier, Ricardo M.; Boss, Emmanuel S. (2006). "Climate-driven trends in contemporary ocean productivity". Nature. 444 (7120): 752–5. Bibcode:2006Natur.444..752B. doi:10.1038/nature05317. PMID 17151666.
  37. ^ Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R. (2004). "Response of ocean ecosystems to climate warming". Global Biogeochemical Cycles. 18 (3). Bibcode:2004GBioC..18.3003S. doi:10.1029/2003GB002134.
  38. ^ Hofmann, M; Worm, B; Rahmstorf, S; Schellnhuber, H J (2011). "Declining ocean chlorophyll under unabated anthropogenic CO2emissions". Environmental Research Letters. 6 (3): 034035. doi:10.1088/1748-9326/6/3/034035.
  39. ^ Boyd, Philip W.; Doney, Scott C. (2002). "Modelling regional responses by marine pelagic ecosystems to global climate change". Geophysical Research Letters. 29 (16): 53–1–53–4. Bibcode:2002GeoRL..29.1806B. doi:10.1029/2001GL014130.
  40. ^ Beaulieu, C.; Henson, S. A.; Sarmiento, Jorge L.; Dunne, J. P.; Doney, S. C.; Rykaczewski, R. R.; Bopp, L. (2013). "Factors challenging our ability to detect long-term trends in ocean chlorophyll". Biogeosciences. 10 (4): 2711–24. doi:10.5194/bg-10-2711-2013.
  41. ^ Mace, Georgina M.; Mora, Camilo; Wei, Chih-Lin; Rollo, Audrey; Amaro, Teresa; Baco, Amy R.; Billett, David; Bopp, Laurent; Chen, Qi; Collier, Mark; Danovaro, Roberto; Gooday, Andrew J.; Grupe, Benjamin M.; Halloran, Paul R.; Ingels, Jeroen; Jones, Daniel O. B.; Levin, Lisa A.; Nakano, Hideyuki; Norling, Karl; Ramirez-Llodra, Eva; Rex, Michael; Ruhl, Henry A.; Smith, Craig R.; Sweetman, Andrew K.; Thurber, Andrew R.; Tjiputra, Jerry F.; Usseglio, Paolo; Watling, Les; Wu, Tongwen; Yasuhara, Moriaki (2013). "Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century". PLoS Biology. 11 (10): e1001682. doi:10.1371/journal.pbio.1001682. PMC 3797030free to read. PMID 24143135.
  42. ^ Taucher, J.; Oschlies, A. (2011). "Can we predict the direction of marine primary production change under global warming?". Geophysical Research Letters. 38 (2). Bibcode:2011GeoRL..38.2603T. doi:10.1029/2010GL045934.
  43. ^ Bopp, Laurent; Monfray, Patrick; Aumont, Olivier; Dufresne, Jean-Louis; Le Treut, Hervé; Madec, Gurvan; Terray, Laurent; Orr, James C. (2001). "Potential impact of climate change on marine export production". Global Biogeochemical Cycles. 15 (1): 81–99. Bibcode:2001GBioC..15...81B. doi:10.1029/1999GB001256.
  44. ^ Cermeno, P.; Dutkiewicz, S.; Harris, R. P.; Follows, M.; Schofield, O.; Falkowski, P. G. (2008). "The role of nutricline depth in regulating the ocean carbon cycle". Proceedings of the National Academy of Sciences. 105 (51): 20344–9. Bibcode:2008PNAS..10520344C. doi:10.1073/pnas.0811302106. JSTOR 25465827. PMID 19075222.
  45. ^ Cox, Peter M.; Betts, Richard A.; Jones, Chris D.; Spall, Steven A.; Totterdell, Ian J. (2000). "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model". Nature. 408 (6809): 184–7. doi:10.1038/35041539. PMID 11089968.
  46. ^ "Major Source of Methanol in the Ocean Identified". Woods Hole Oceanographic Institution. Retrieved 2016-03-30.
  47. ^ Mincer, Tracy J.; Aicher, Athena C. "Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton". PLOS ONE. 11 (3): e0150820. doi:10.1371/journal.pone.0150820. PMC 4786210free to read. PMID 26963515.
  48. ^ a b c d McVey, James P., Nai-Hsien Chao, and Cheng-Sheng Lee. CRC Handbook of Mariculture Vol. 1 : Crustacean Aquaculture. New York: C R C P LLC, 1993.[page needed]

Further reading

External links

 
About plankton  
 
By size
 
Bacterioplankton
 
Phytoplankton
 
 
Diatom orders
 
Flagellates
 
Zooplankton
 
 
Copepod orders
 
Related topics
Aquatic ecosystem topics
 
 
 
 
 
General  
 
Freshwater
 
Ecoregions
 
 
 
Aquatic ecosystems – marine components
 
 
Marine  
 
Marine
life
 
Marine
habitats
 
Issues

PRODIGY-5

ALL IN ONE NUTRITIONAL WITH TRANS-ARMOR® NUTRIENT TECHNOLOGY

BREAKTHROUGH TECHNOLOGY IN PRODIGY 5.

THE FIVE UNIQUE ATTRIBUTES

A revolutionary new product featuring five unique attributes that create an all-in-one nutritional experience for everyone, every day. Take advantage of the technology and know-how, and enjoy the benefits of the phytoplankton, antioxidants, vitamins, and energy you can feel in minutes with the new ForeverGreen product: Prodigy-5.

Vitamins in Prodigy-5

We all know that vitamins and minerals are essential to our overall health, yet many of us are left not getting most of the vitamins and minerals we need through our normal eating habits. Prodigy-5 features a unique blend of vitamins and minerals that were each specifically chosen using the best peer reviewed scientific research available to support your general and eye health.  

Technology & Know-how behind Prodigy-5

​Adam Saucedo, M.D., has teamed up with the brilliant mind of Balamurali Ambati, M.D., PhD, MBA to bring you the exclusive TransArmor™ Nutrient Technology, found only in Prodigy-5. The patent-pending TransArmor™ technology increases the transit time of nutrients through the digestive system and primes the body for increased absorption of these nutrients.

Antioxidants in Prodigy-5

Prodigy-5 features natural pomegranate and raspberry for a bold flavor that also delivers powerful antioxidants! Antioxidants help to rid the body of damaging free radicals. Antioxidants become a powerful defense system to these free radicals, which if left unchallenged, can contribute to the cause of a range of health problems. Raspberries and pomegranates, Marine phytoplankton, Curcuma.

Phytoplankton in Prodigy-5

The most fundamental nutrient on the planet, phytoplankton are microscopic plant-based organisms that generate most of the world’s oxygen. Phytoplankton, found naturally in both salt and fresh water, are a viable source of vitamins, minerals, amino acids, and other micronutrients.

Energy of the Prodigy-5

Prodigy-5 features natural green tea extract, which is known to help increase energy and mental focus. It helps provide the alertness associated with caffeine without the jittery side effects! Green tea has a range of health benefits, and also contains powerful antioxidants, making it the perfect way to get a little extra boost with your daily dose of Prodigy-5.

PRODIGY-5 DEVELOPED BY MEDICAL INDUSTRY LEADERS

Prodigy-5 revolutionaly Trans-Armor™ nutrient technology, developed by medical industry leader doctors aids the body in absorbing more of the nutrition than it normally would, thereby increasing efficiencies and overall health.

In addition to this scientifically proven technology, Prodigy-5 is considered an all-in-one nutritional habit.

Dr. Ambati, child prodigy, and ForeverGreen’s own Research Scientist Adam Saucedo have partnered together and developed what is being called the check-mate in the conversation of nutrition, Prodigy-5.

DR. AMBATI

CHILD PRODIGY

Dr. Ambati started calculus at age 4, graduated high school at age 11, pre-med age 13, med-school at 14 and was announced the Guinness Book of World Records holder for youngest doctor at age 17.

DR. ADAM SAUCEDO

RESEARCH SCIENTIST

Dr. Adam Saucedo is ForeverGreen’s own Research Scientist, founder and Chief Medical Adviser of the Center for the Heart and Founder of the New Life Center; the largest eating disorder clinic in the world.

DID YOU KNOW THAT HUMAN STOMACH ACIDS ARE STRONG ENOUGH TO DISSOLVE A RAZOR BLADE?

This means that your stomach acids act like a wall, preventing supplements and nutrients from passing to your blood stream and cells; only a percentage survives. Plain English? Your body gets only a fraction of the nutrients it digests. So, this begs the question, Can it be changed?

Can we use modern science to get more out of the digestive process? The answer is a very exciting yes!

Prodigy-5 with the perfect micro-nutrient formula featuring “Trans-Armor Nutrient Technology” that can quickly deliver the nutrients you need throughout your entire body and has the ability to increase the absorption and utilization of those nutrients to maximize your results. With this ground-breaking technology and formula, Prodigy-5 is the solution to the global problem of malnutrition.

With today’s nutritionally bankrupt foods, and the bodies inability to absorb 100% of even the healthiest whole foods, malnutrition effects every singe one of us. Whether you are healthy, wealthy, poor or starving, every person on this planet needs the nutritional revolution offered in Prodigy-5. It is literally for EVERYONE, EVERY DAY.

Prodigy-5 delivers a new TransArmor™ Nutrition bio-enhancing technology.
See how it works:

Prodigy-5 revolutionaly Trans-Armor™ nutrient technology, developed by medical industry leader doctors aids the body in absorbing more of the nutrition than it normally would, thereby increasing efficiencies and overall health. In addition to this scientifically proven technology, Prodigy-5 is considered an all-in-one nutritional habit.

Prodigy 5 contains the new "Trans-Armor™" delivery technology that provides nutrition and energy at the highest level of absorption to our body's cells, including:

• a micronutrient formula for general health,
• a micronutrient formula for eye health,
• an impressive antioxidant profile,
• an impressive and new bio-enhancing absorption technology


Does not contain artificial sweetners or additives. Sweetened with Pomegranate, Raspberry, and Stevia.

PRODIGY-5 HIGHLIGHT

PHYTOPLANKTON

One of those rare products that contains almost everything you need for life (and the rebuilding of cells) is marine phytoplankton.

Marine phytoplankton are one-cell plants that are too small to be seen individually without the aid of a microscope. Because they are microscopic, the body’s cells can absorb them immediately (bioavailability) and receive all of their valuable nutrients at the same time for maximum effectiveness.

The marine phytoplankton, also known as a “Superfood”, is according to NASA and plenty of scientific researches the most important plant and food in the world as it provides the earth with over 90% of it’s oxygen. Marine phytoplankton is not only an important source of oxygen it is a critical food source for ocean life and apparently, for us too.

There are very few (foods) that provide all, or even most, of the raw materials to make new cells and sustain the existing ones. A complete super food, these amazing plants contain more than 90 nutrients vital for a healthy body.

It contains all nine amino acids that the body cannot make. The essential fatty acids are also present (Omega-3 and Omega-6). Further it contains the most important vitamins and mineral nutrients. For example vitamin C, H, B1, B2, B3, B6, B12, E, selenium, zinc, chromium, magnesium, calcium, nickel, iron and many more. (General informations about vitamins)

These valuable nutrients are essential for the production of healthy new cells. We all have, at one time or another, cellular or energy blockages, whether they be emotional or physical. And, among the functional ingredients identified from marine algae, natural pigments (NPs) have received particular attention.

Some benefits (but not all) of marine phytoplankton include:

Support Cardiovascular Health: The high level of antioxidants, amino acids, and high levels of omega-3 fatty acids are known to support a healthier cardiovascular system.

Promotes Healthy Skin: There are large amounts of bioflavonoids that can remove toxins from skin cells. Marine phytoplankton also contains riboflavin that reduces free radical attacks in skin cells.

Boost the Immune System: Alanine, beta-carotene, bioflavonoids, and vitamin E are all immune system enhancers found in this superfood.

Increase Energy: Marine phytoplankton detoxifies the body, and eliminates toxins from the cells. This will improve your energy and mood levels.

Stabilizes Blood Sugar Levels: Marine phytoplankton is really good for stabilizing blood sugar levels. Chromium helps to prevent and moderate against diabetes. Glutamic acids help to reduce alcohol and sugar cravings. Phenylalanine is a known sugar craving reducer.

Helps with Joint Health: Manganese helps to assist in joint mobility. Omega-6 fatty acids can relieve symptoms of arthritis. Pathogenic acid can reduce morning pain caused by arthritis. It will help a lot with joint mobility, and reducing pain and stiffness.

Liver Support: The arginine is found in this superfood and is known to help detoxify the liver.

Improves Brain Function: The high amount of omega-3 fatty acids improve brain function. The nucleic acids can enhance the memory. Phenylalanine improves mental clarity. Proline increases learning ability. Magnesium helps reduce mood swings.

More information about phytoplankton

PRODIGY-5 HIGHLIGHT

VITAMINS AND MINERALS

MICRONUTRIENT FORMULA FOR GENERAL HEALTH

Vitamin A • Vitamin C • Vitamin D • Vitamin E • Vitamin K • Vitamin B6 • Vitamin B12 • Folate • B1 (Thiamin) • B2 (Riboflavin) • B3 (Niacin)



MICRONUTRIENT FORMULA FOR EYE HEALTH

Lutein • Zeaxanthin • Copper • Zinc

Vitamins have specific role to play in the natural wear and tear of the body. There are many vitamin benefits that have a major impact on our overall health.
Vitamins are divided into two types: fat soluble and water soluble. Fat soluble vitamins (vitamin A, D, E and K) are stored in the fat tissues and liver. They can remain in the body up to six months. When the body requires these, they are transported to the area of requirement within the body with help of special carriers. Water soluble vitamins (B-vitamins and vitamin C) are not stored in the body like the fat soluble ones. They travel in the blood stream and need to be replenished everyday.


Below is a list of the 13 major vitamins and what each does for your body:

Prodigy-5 contains: Vitamin A (Beta-Carotene) is a natural antioxidant. It belongs to a class of pigments known as carotenoids which include the yellow, red and orange pigments that give many vegetables and plants their coloring. Vitamin A has been found to enhance immune system functions by supporting and promoting the activities of white blood cells as well as other immune related cells. It also helps to inhibit free radicals and their damaging effects which have been associated with arthritis, heart disease and the development and progression of malignant cells (cancer). Beta-carotene is a precursor for vitamin A (approximately 6 mg of ß-carotene = 1 mg vitamin A). Beta-carotene is best known for the body’s ability to convert it into retinal, which is essential for good vision and visual health, skin, and immune functions.
Natural sources of beta-carotene include carrots, pumpkin, sweet potato, spinach, kale, collard and turnip greens, and winter squash.

According to the National Institutes on Health, the average adult male should be getting 900mcg of vitamin C each day. Females should be getting 700mg a day. Individuals with special needs (women who are pregnant, smokers) may have different requirements and should consult their health professional.

Prodigy-5 contains: Vitamin B1 (Thiamin) is a water-soluble B-vitamin involved with many cellular functions including carbohydrates metabolism, break down of amino acids, production of certain neurotransmitters and multiple enzyme processes (through the coenzyme thiamin pyrophosphate, or TPP). Thiamin can be found in small amounts in a wide variety of foods. Pork, sunflower seeds, yeast, peas and wheat are a few examples. Very little thiamin is stored within the body and must be consumed on a regular basis. A deficiency may result in weakness, loss of appetite, nerve degeneration and irritability.

Prodigy-5 contains: Vitamin B2 (Riboflavin), like most B-vitamins, is involved in many cellular functions. Riboflavin is important in energy metabolism, folate synthesis, conversion of tryptophan to niacin and acts as important coenzymes (FAD/FMN) involved in many reactions. It can be found in liver, mushrooms, spinach, milk, eggs and grains. Because it is water-soluble, there is minimal storage of riboflavin within the body and when dietary intake is insufficient, deficiency can occur (usually accompanied with other vitamin deficiencies).

Prodigy-5 contains:Vitamin B3 (Niacin), also referred to as nicotinamide and nicotinic acid, is another water-soluble, B-vitamin involved with energy metabolism. The coenzymes of niacin (NAD/NADH/NADP/NADPH) are necessary for ATP synthesis (the body’s main energy source), synthesis of fatty acids and some hormones and the transport of hydrogen atoms. When niacin levels are low, the body can use L-tryptophan (an essential amino acid) to manufacture the vitamin. This process is not ideal, however, as it can rapidly deplete L-tryptophan in the body and take away from its other needs such as maintaining optimal levels of serotonin and melatonin. Niacin can be found in grains, liver, fish and chicken.

Prodigy-5 contains: Vitamin B6 is a water-soluble vitamin which plays a variety of important roles in numerous biological processes. Humans cannot produce vitamin B6 so it must be obtained from the diet. Adequate sources of B6 include meats (salmon, turkey, chicken) and whole grain products, such as spinach, nuts and bananas. There are three forms of vitamin B6: pyridoxal (PL), pyridoxine (PN) and pyridoxamine (PM). Pyridoxal-5′-phosphate (PLP) is the principal coenzyme form and has the most importance in human metabolism. It acts as a cofactor for many enzymatic reactions involving L-tryptophan, including L-tryptophan’s conversion to serotonin, an important neurotransmitter in the brain. Pyridoxal-5′-phosphate is also involved in other enzymatic reactions where other neurotransmitters, such as gamma-aminobutyric acid (GABA), are synthesized. This plays a critical role in the functions of the nervous system.
Regarding cardiovascular health, there is an association between low vitamin B6 intake with increased blood homocysteine levels and increased risk of cardiovascular diseases, which has been documented in several large observational studies. Vitamin B6, along with folic acid, vitamin B5, vitamin B12 and niacin, is involved in cell metabolism, enhances the immune system, supports the functions of the nervous system, aids in carbohydrate metabolism to produce energy and promotes cognitive health. Vitamin B6 is necessary for the conduction of nerve impulses, regulation of steroid hormones, catabolism of glycogen to glucose, heme synthesis, and the synthesis/ metabolism of amino acids and neurotransmitters.

Prodigy-5 contains: Vitamin B12 is a water-soluble vitamin essential for numerous processes in the body. The richest food sources of vitamin B12 include animal products such as meat, poultry and fish. It is not generally present in plant products with the exeption of peanuts and soybeans which absorb vitamin B12 from bacteria-filled nodules growing on the roots of these plants. Cyanocobalamin is the form most commonly used in supplements but it must be converted into methylcoblamin before it can join the metabolic pool and be properly utilized by the body. Vitamin B12 is also available as methylcobalamin, which is the methylated form, allowing it to become active quicker and be more effective. Vitamin B12 is necessary for countless processes within the body; it transfers methyl groups, plays a part in DNA synthesis and regulation, helps facilitate cell synthesis, maturation and division, helps convert homocysteine to methionine playing a role in cardiovascular protection, aids in the proper functioning of the nervous system, participates in the metabolism of carbohydrates, proteins and fats, helps produce SAMe for mood and cognitive health and also helps produce energy.

Prodigy-5 contains: Vitamin C (Ascorbic acid) is a water-soluble antioxidant essential for human health and life. It has been proven necessary for healthy immune responses, wound healing, non-heme iron absorption (coming from grains and vegetables), reduction in allergic responses, development of connective tissue components such as collagen, and for the prevention of diseases. Vitamin C has also been shown to be important for cardiovascular health, reducing free radicalproduction and free radical damage, and good cognitive health and performance.
Due to human’s inability to produce vitamin C, it is essential to ingest sources containing vitamin C on a regular, if not daily basis. Natural sources of vitamin C include oranges, guavas, peppers (green, red, yellow), kiwis, strawberries, cantaloupes, Brussels sprouts, broccoli, and many other fruits and vegetables.

Prodigy-5 contains: Vitamin D is a fat-soluble vitamin essential for normal growth and development, the formation and maintenance of healthy bones and teeth, and influences the absorption and metabolism of phosphorus and calcium. It is necessary for proper muscle functioning, bone mineralization and stability, and multiple immune functions. Primarily the vitamin D used by the body is produced in the skin after exposure to ultraviolet light from sunlight. Lack of exposure to sunlight, reduced ability to synthesize vitamin D in the skin, age, low dietary intake, or impaired intestinal vitamin D absorption can result in deficiency. Deficiency has been associated with rickets (poor bone formation), porous or weak bones (osteopenia, osteoporosis), pain and muscle weakness, increased risk for cardiovascular disease, impaired cognitive health, and the development and progression of malignant cells (cancer).
Natural food sources of vitamin D are few; these foods are eggs from hens that have been fed vitamin D or fatty fish such as herrings, mackerel, sardines and tuna. Due to low vitamin D levels, countries such as the United States and Canada have opted to fortify foods such as milk and other dairy products, margarines and butters, some natural cereal and grain products.
According to the National Institutes on Health, the average adult should be getting 600IU of vitamin D each day. Individuals with special needs (the elderly, women who are pregnant) may have different requirements and should consult their health professional.

Prodigy-5 contains: Vitamin E is one of the most powerful fat-soluble antioxidants in the body. It has been proven to help promote cardiovascular health, enhanced immune system function, aid in skin repair and to protect cell membranes from damage caused by free radicals. Vitamin E contributes to proper blood flow and clotting as well as cognitive health and function.
Natural sources of vitamin E include herbs such as cloves and oregano, whole grains, nuts and seeds, wheat germ, avocado, egg yolks, and vegetables/fruits such as dark leafy greens, peppers (red, yellow, orange, green), tomatoes, and mangos. Other sources are vegetable oils, margarines, and fortified cereals.

Prodigy-5 contains: Folic Acid is water-soluble vitamin important for many aspects of health. Sources of folic acid include dark, green leafy vegetables such as spinach or asparagus, fortified cereals, orange juice and legumes. Folic acid (folate) must go through a series of chemical conversions before it becomes metabolically active to be properly utilized within the body.
Folinic acid is the highly bioavailable, metabolically active derivative of folic acid and does not require the action of the enzyme dihydrofolinate reductase to become active, so it’s not affected by medicines and herbs that inhibit this enzyme. Adequate folate is necessary for proper DNA and RNA synthesis in regards to fetal growth and development. Due to these effects, the U.S. Public Health Service recommends all women capable of becoming pregnant consume 400 mcg of folic acid daily to prevent neural tube defects.
In addition to its clear effects on fetal growth and development, folic acid also plays an important role in cardiovascular health. By aiding in the conversion of homocysteine to methionine, it has been shown to reduce the levels of homocysteine, a sulfur containing amino acid. In the absence of adequate folic acid levels, homocysteine levels increase and high homocysteine levels are associated with atherosclerosis and the reduced circulation of oxygen and nutrients to the heart, ears and other organs. These results have been documented in countless studies. Folic acid, along with vitamin B6, vitamin B5, vitamin B12 and niacin, is involved in cell metabolism, enhances the immune system, supports the functions of the nervous system, aids in carbohydrate metabolism to produce energy and promotes cognitive health.

Prodigy-5 contains: Vitamin K, a generic term for a group of fat soluble vitamins, are involved mostly in the process of blood clotting, but also needed in metabolic pathways of bones and other tissues. The most well known are vitamin K1, also known as phylloquinone, and vitamin K2, known as menaquinone. Vitamin D and vitamin K work together in bone metabolism and development. Vitamin K works against oral anticoagulants such as 4-hidroxikumarin, and excessive vitamin K intake, either through supplementation or a change in diet, can reduce the anticoagulant effect. Vitamin K1 is mainly found in leafy green vegetables (such as spinach, swiss chard and kale), avocado and kiwi fruit; vitamin K2 can be found in meat, eggs, and dairy and is also synthesized by bacteria in the colon.

More information about vitamins

PRODIGY-5 HIGHLIGHT

ANTIOXIDANTS


WHAT ARE OXIDANTS?

Oxidants are free radicals that either our bodies produce or we get from the environment. Our bodies create oxidants as a response to stress or poor diet, or we are exposed to oxidants through environmental factors like pollution. Oxidative damage is a contributing factor to many diseases, including muscle and tissue degeneration, heart disease, diabetes, cancer, and many other health problems.


WHAT ARE FREE RADICALS?

Free radicals are atoms or groups of atoms with an odd (unpaired) number of electrons. They are like bullies that are low in energy and attack healthy cells and steal their energy to satisfy themselves. Free radicals cause damage to our blood vessels, which can lead to deposits of bad cholesterol and block arteries. Free radicals come in many shapes, sizes, and chemical configurations. What they all share is a voracious appetite for electrons, stealing them from any nearby substances that will yield them.

The human body naturally produces free radicals and the antioxidants to counteract their damaging effects. However, in most cases, free radicals far outnumber the naturally occurring antioxidants. In order to maintain the balance, a continuous supplemental source of external antioxidants are necessary in order to obtain the maximum benefits of antioxidants.


WHAT ARE ANTIOXIDANTS AND WHY DO WE NEED THEM?

Antioxidants are the nutrients’ police force! They are free radical scavengers! They get rid of the bullies! Antioxidants are like a million microscopic special ops on a mission to save your body from the inside out. The benefits of antioxidants are very important to good health, because if free radicals are left unchallenged, they can cause a wide range of illnesses and chronic diseases.

WHERE CAN WE FIND ANTIOXIDANTS?

Obtained through our foods and produced by are bodies, antioxidants are a powerful defense system.
Antioxidants can be found in flavonols (found in chocolate), resveratrol (found in wine), Ellagic acid (found in Raspberries and pomegranate), and lycopene (found in tomatoes). Other popular antioxidants include vitamins A (beta-carotene), C, E, and catechins.

GREAT SOURCES OF ANTIOXIDANTS IN PRODIGY-5

Marine phytoplankton, Raspberries, Pomegranates, Curcuma

Raspberries and pomegranates contain one of the most powerful antioxidants known, Ellagic acid. Ellagic acid is a potent natural antioxidant that can be found in raspberries and pomegranates. Ellagic acid has been shown to be an effective anti- mutagen and anti-carcinogen.

Anthocyanins (red flavonoid pigment found in plants) give pomegranates their red color and offer a strong serving of antioxidants. Punicalagins (a type of phenolic compound) specifically support cardiovascular and neurological health. Studies have shown that antioxidants 18. can play a role in reducing the cell damage of free radicals.

ANTIOXIDANTS AND AGING

Antioxidants are powerful molecules that support healthy aging in more ways than one. These potent compounds aid in an overall healthy lifestyle by supporting cellular health. Aging isn’t about your chronological age; it is more about the amount of stress in your life and the the function of your cells!

More information about antioxidants

ORDER PRODIGY-5

 
 
buy prodigy5
buy prodigy5
 

Becoming a member gives you the advantage of shopping on discounted member prices next time you purchase. Moreover ForeverGreen brings the power of the global economy to every doorstep. By offering unique, effective and high-impact products that fit in an envelope, ForeverGreen allows anyone, anywhere to build a successful global business. Whether you’re interested in a little extra income or building a long-term viable business, you’re in the right place with ForeverGreen.

 

PRODIGY 5 PRICES


PRODIGY-5 Single Case
(One case contains 28 serving) prices
$ 75.95
€ 69.11
Prodigy 5 Single DEF small

PRODIGY-5 Double Case 
(One case contains 28 serving) prices
$ 149.95
€ 136.45
Prodigy 5 Double DEF small

You will be redirected to ForeverGreen's official webshop.
Select your country and you'll find Prodigy-5 in the left column, in the strips products group.

ForeverGreen are shipping worldwide.

Az eredeti Powerstrips fejlesztőjének, Dr. Minsoo Kim legújabb tapasz fejlesztésére váltottunk:
BEPIC - ALLEVI8 PRO
Nagyobb hatékonyság, jobb ár, megbízhatóbb szállítás!

www.bepic.com/shop

We have changed! More efficiency, better price, more reliable delivery!
We've switched to the latest product from the original Powerstrips developer, Dr. Minsoo Kim: BEPIC - ALLEVI8 PRO

Wir haben uns verändert! Mehr Effizienz, besserer Preis, zuverlässigere Lieferung!
Wir haben auf das neueste Produkt des ursprünglichen Entwicklers von Powerstrips, Dr. Minsoo Kim, umgestellt: BEPIC - ALLEVI8 PRO

Мы изменились! Больше эффективности, лучше цена, надежнее доставка!
Мы перешли на новейший продукт от оригинального разработчика Powerstrips, доктора Минсу Кима: BEPIC - ALLEVI8 PRO

Nous avons changé ! Plus d'efficacité, un meilleur prix, une livraison plus fiable !
Nous sommes passés au dernier produit du développeur original de Powerstrips, le Dr Minsoo Kim : BEPIC - ALLEVI8 PRO

Siamo cambiati! Più efficienza, prezzo migliore, consegna più affidabile!
Siamo passati all'ultimo prodotto dello sviluppatore originale di Powerstrips, il Dr. Minsoo Kim: BEPIC - ALLEVI8 PRO

TERMÉKLEÍRÁS | PRODUCT DETAILS
> PDF <